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Diffusion in lattice Lorentz gases with a percolation threshold
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A mean-field approximation for the diffusion coefficient in lattice Lorentz gases with an arbitrary mixture of
pointlike stochastic scatterers in the low-density limit is proposed. In this approximation, the diffusion coef-
ficient is directly related to the first return probability of the moving particle in the corresponding Cayley tree
through an effective ring operator. A renormalization scheme for the approximate determination of the first
return probability is constructed. The predictions of this mean-field theory and those of the repeated ring
approximation(RRA) are compared with computer simulation results for models in which a frakfj@f the
scatterers are deterministic backscatterers, so that the diffusion coefficient vanishes beyond a certain percola-
tion thresholdxg. The approximation proposed in this paper is seen to be in good agreement with the
simulation results, in contrast to the RRA, which already fails to give the correct percolation threshold.
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PACS numbegps): 05.20-y, 05.40-a, 51.10+y

[. INTRODUCTION is the velocity autocorrelation function. The brackets in Egs.
(1.1 and(1.3) denote an average over different trajectories
Lattice Lorentz gases have been often used as simpli@ a given lattice realization, followed by a subsequent aver-
models for nonequilibrium statistical-mechanical systemsage over different realizations. The discrete nature of these
[1,2]. Moreover, they have recently been studied from themodels gives rise to an important difference with respect to
point of view of the dynamical systems theory in order tothe continuous case, making the prediction@oin the Bolt-
analyze the connection between the macroscopic transportmann approximation incorrect even in the low-density limit
properties, such as the diffusion coefficient, and the chaogp—0) [6]. The reason for this is the contribution of corre-
properties of the microscopic dynami®. In a lattice Lor-  lated sequences of collisions appearing in any discrete model
entz gas, a particle follows ballistic trajectories on awith backscattering, which gives rise to one-dimensional pa-
d-dimensional regular lattice with a fractigm of the sites thologies. The contribution associated with these correlated
occupied by fixed scatterers randomly distributed. Upon hitirajectories has not been evaluated in general, except for
ting a scatterer, the moving particle modifies its direction ofsome particular models. For example, van Beijeren and Ernst
motion according to a given set of stochagtic determinis- [7] used an analytical enumeration method to derive the ex-
tic) collision rules depending on the type of scatterer. Anact expression for the diffusion coefficient in the case of
example of a lattice Lorentz gas is the rotator mdde) in identical point scatterers on a Bethe lattice or Cayley tree. In
which a fractionxg of the scatterers are stochastic right ro-the case of the rotator model on the square lattice wijth
tators, a fractiorx, are stochastic left rotators, and a fraction =1 or x_ =1, the exact result becomes
xg=1—xr—X_ are deterministic backscatterers. The scatter-
ers that we will consider in this paper are pointlike, but other D(o)= 1 Re 1 x pl=x
models with excluded volume scatterers have also been de- (p)= Z “1-w; 1+x 2 1+x/
fined[4,5].
The main transport property in Lorentz gases is the diffu-wherex is the first return probability, which is obtained from
sion coefficientD (p), which is defined by the Einstein rela- the cubic equation
tion

(1.9

X+ w1 X—a)2
2 1=2Re + .
(r’(t))=2dD(p)t, t—oo, (1. 1+Xw,  1—Xo,

1.5

where the system has been assumed isotropic. In the caselgfthese equationsy, and w, are eigenvalues of the colli-

lattice Lorentz gases, the Green-Kubo formula for the diffu—%ﬁ?}g]t?]tg);v;/gcﬁﬁf?uii)cﬁ Dcl ozﬁfcﬁggg}gfpéfgﬁgmSr;f:;oa_lSO
sion coefficient reads

tator model on a Cayley trdé]:

1 & 1 (1—x)2
D<p>=a(t=20<b<t>—§), (1.2 D(p)=—5,

(1.6

1 p
1-x(1-xg) 2/

h where the probability of first return is now given by the
where following cubic equatiorf9]:
d(t)=(v(t)-v(0)) (1.3 x=xg+ (1—xg)x>. (1.7
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Equation(1.7) predicts thatx=1 (absence of percolatiorif RRA in the absence of scatterers. On the other hand, it gives
the fraction of pure backscatterers is equal to or larger than a prediction different from the exact resyit.6) for the de-
critical valuexg= % [9,10]. Beyond this percolation thresh- terministic case, although it is still a reasonable approxima-
old, the particle becomes trapped in a finite cluster of end§on. To complete the picture, we need an approximate
blocked by backscatterers; as a consequence, the diffusi@¢heme to obtaix for any given model. This problem was
coefficient vanishegbsence of diffusive percolatipmAs xg ~ partially addressed in Refl11]. Here we extend the mean-
goes tox§ from below, Egs.(1.6) and (1.7) show thatD field theory developed in Refl11] to a hierarchy of system-

vanishes as atic approximations.
The paper is organized as follows. The models studied in
D~ (Xg—Xg)* (1.8  this paper are described in Sec. Il. In Sec. lll we make a brief
summary of the Boltzmann approximation and the RRA, and
with a critical exponenj=2. propose a new mean-field theory that gives us a relationship

The threshold value§g=% must also be correct in the between the diffusion coefficierb* and the first return
case ofstochasticrotators, according to the following argu- probabilityx. This theory is not complete unless we also give
ment[8,11]. A nonpercolating cluster consists of a collection an estimate of the first return probability. This is done in Sec.
of bonds with nodal points at the locations of the rotators,|V, where a sequence of improving mean-field theoriesxfor
bounded in all directions by pure backscatterers. Consegs derived. The extension of the results of Sec. IV A to the
quently, the precise nature of the rotators is unimportant, ageneral rotator model and to the mirror model is carried out
long as they allow a returning particle to explore all direc-in Appendix A. The demonstration thag=(b—2)/(b—1)
tions from the nodal point. It is then appealing to look for anis the exact percolation threshold for any stochastic model on
approximate simple relationship between the diffusion coefa lattice of coordination numbdr is given in Appendix B.
ficient and the probability of first return in lattice Lorentz The predictions of our mean-field scheme foandD* are
gases with a percolation threshold. This is one of the primargompared with simulation results in Sec. V. The paper ends
objectives of this paper. with some concluding remarks in Sec. VI.

An analytical approximation for the reduced low-density
diffusion coefficientD*=lim,_,, pD(p) of any model with
a mixture of scatterers was given by Ossendrijver, Santos,
and Erns{4] by resumming all the contributions associated A |attice Lorentz gas model is defined by means of two
with the so-called repeated ring collisions. The low-densityingredients: the geometry of the substrate lattice and the na-
diffusion coefficient given by the repeated ring approxima-tyre of the scatterers. These scatterers occupy the lattice with
tion (RRA) coincides with the exact result of van Beijeren 4 given densityp, the fraction of scatterers of typebeing
and Ernst in the case of identical point scattef@sIn Ref.  x_'so thats,x,=1. At this point it is important to note that
[12] we showedby means of Monte Carlo simulationthat  \ve are going to discuss only the low-density limit-60) of
this approximation is also exact in models without purethese models. In this situation the particle can return to a
backscatterergfor instance, including only symmetric spe- previously visited scatterer only with a velocity vector oppo-
cies of right and left rotators or right and left mirrardlev-  sjte to the initial one, so that it follows trajectories along a
ertheless, the prediction of the RRA for any model that i”'Caery tree. In contrast, whan# 0 there are also polygonal
cludes pure backscatterers was shown to be very poor, excephjectories that contribute to the diffusion coefficient on the
if xg<<1. In particular, this approximation predicts a diffu- same order as those of the Cayley tree. An equivalence can
sive percolation thresholgg=3 for models defined on the pe established between the low-density limit stbchastic
square lattice, while the simulations indicade=3. lattice Lorentz gases defined on a regular lattice with coor-

The aim of this paper is to propose a new mean-fielddination numbeb and the Cayley tree with the same coor-
theory for the diffusion coefficient in a Cayley-tree lattice dination number. This equivalence is not strictly true in the
Lorentz gas with a mixture of point scatterers. This theorydeterministiccase because if a particle returns to the origin
keeps the excellent predictions of the RRA for the case oflong a closed loop, it will repeat that loop forever. This
identical point scatterers and also in the absence of backscatieans that the polygonal trajectories cannot simply be ig-
terers, but clearly improves the latter theory for percolatiomored when the limipp—0 is taken[13]. Nevertheless, we
models. It will be shown that the proposal made in this papetan still define the deterministic Cayley tree model as an
predicts a percolation threshakg =3 (x3=2) for any sto- independent model, even if it does not adequately represent
chastic rotator or mirror model with backscatterers definedhe low-density limit of the corresponding lattice Lorentz
on the squaréhexagondllattice. This prediction is in excel- gas.
lent agreement with our Monte Carlo simulation results. The The collision rules for a given type of scatterarare
theory is constructed upon the assumption that the relatiordefined through & X b collision matrixW,, whose element
ship between the ring operat& and the first return prob- W,;; is the probability that a particle with incident velocity
ability matrix X that Ossendrijveet al.[4] found for identi-  will be deflected along the direction A diagram of the
cal scatterersdR=X/(1— X), also holds for the general case. collision rules for right and left rotators on the square lattice
This assumption can be justified by mean-field theory reais sketched in Fig. 1. Here, the moving particle arrives at the
soning. In that way, we obtain a general relationship betweescatterer site from the left. After hitting the rigtieft) rota-
the diffusion coefficienD* and the first return probabilitg. ~ tor, it has probabilitiesa,, B, @q, and az=1—a;—a,

This relation extends the exact res(it4) for identical scat- — 8 of being transmitted, reflected, deflected to the right
terers to any mixture of scatterers and also reduces to thigeft), and deflected to the leftright), respectively. Pure

II. DESCRIPTION OF THE MODELS
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FIG. 1. Right and left rotators on a square lattice. The moving o _ )
particle enters from the left and collides with the fixed scatterer. FIG. 2. Same as in Fig. 1 but for right and left mirrors.
The corresponding scattering probabilities are denetgda,, a3, _
andp. wR/wa/ZaerB(—1)/+[a2+a5(—1)/]e'/’7’3
backscatterers are defined as a special case of rotators with Hlag+an(—1) 1% ™ /=0,...5 (2.7

B=1, a;=a,=a3=0. In the rotator model, a fractioxg
(x.) of the scatterers are riglieft) rotators, and a fraction
Xxg=1—Xr—X_ are pure reflectors. The corresponding colli-
sion matrices are

In the above rotator models, the relevant eigenvectors for the
computation of the diffusion coefficient arel¢;)
=|vytivy) and|e,_1)=|vi—ivy), where|v,), a=X,y, is

a vector ofb components defined ag,=¢;,, i=1,... b.

a a; B oag Note that the norm i¢es|@1)=(¢pp-1l@p-1)=Zig-6=b.
@y ay ay, B In the rotator modgl the action of a scatterer is defined
We=| > 2 1 , (2.1)  With respect to the direction of the moving particle. In the
B az ay a mirror model the action is defined with respect to the orien-

tation of mirrors in the lattice. In this model, there are three
types of scatterers on a square lattice: right mirrors, left mir-
rors, and pure reflectors. The collision rules for right and left
mirrors are sketched in Fig. 2. Their collision matrices are

ap, B az ap

a, az B a

a; a, az fB
we=| T (2.2

B ay ay az ay ay B oag
as B a; ar W= @ a, azg P , 2.8
00 1 0 B az a; o
000 1 as B ay ap
We=l1 0 0 of @3 @ as B
0100 as ay a, B

W, = B ay a, as|’ (2.9

a, B az a

The eigenvalues of these matrices are

wr/=0f = at B(—1) +agi +az(—), /=01,23,
(2.4)  with the eigenvalues

wg,=(-1), /=01,...b—1, (2.5 wpe=w =1, wr=w 3=1-2(B+az), (2.10

where i is the imaginary unit. In the deterministic casg ( wry,=w 2=1—-2(a1t+a3), wrz=w 1=1-2(B8+ay),
=1), this model reduces to the one introduced by Gunn and

Orturo [9]. and relevant eigenvectorsg)=|v,+vy) and |e3)
It is straightforward to generalize the rotator model to=|vx—Vy). Of course, in stochastic models with = s,
hexagonal lattices. In that case, rotators and mirrors become identical scatterers. In the deter-
ministic case &,;=1) and in the absence of pure reflectors
a3 a, a; B as ay (xg=0), the mirror model reduces to the one introduced by

Ruijgrok and Cohefi14]. The deterministic mirror model in
the presence of backscatterers does not exhibit diffusion,
as @, az a; a; B since every trajectory is trapped between two backscatterers

W= B as a, as; ay ag |’ 2.6 with intermediate collisions at the mirrors.

ag az ap; a; B as

a, B as as az a

a, a1 B as ag a3

Ill. DIFFUSION COEFFICIENT

Let us define the one-particle distribution function,
for right rotators andw, =W}, for left rotators, where the p(n,i,t), as the probability that, in a given quenched con-
dagger represents the transpose. The eigenvalues are figuration of scatterers, the particle is at sitat timet with
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a precollisional velocityg . This distribution function satis- 0f possible configurations. In that way, all the correlations

fies a Chapman-Kolmogorov equation are destroyed and we can write
1 1 1
p(n+e,it+1)=|1-> Can)p(n,i,t) Ty=] ———\ >- _ _
2 Ea: CaTa za: <CaTa> Pza: XaTa
2 c$ Waiip(n,j,t), (3.0 (3.7

Consequentlyh ,—1—3 X0, , /=0,1,... p—1. Mak-
wherec,, is a Boolean variable that takes the value 1 if theing use of Eqs(2.4), (2.5), (2.7), (2.10, and(3.6), we get
siten is occupied by a scatterer of typebeing 0 otherwise.

Obviously,{c,,) =Xap, Where the angular brackets denote an L, 1 .
average over a site-independent distribution of scatterers. In D* =5[1-az+B+xp(1+az—p)] 39
a quenched configuration, the average velocity of the moving

particle isv(t)=Z2,Z;p(n,i,t)e . Thus, the velocity autocor- for the rotator and the mirror models on the square lattice

relation function can be written as and
*©=03 3 a-e(p(niOp0]0), (32 D*=H1—a3+ﬂ+%(a1+a5—a2—a4)
where ) is the number of sites and we have taken 1 -1
into account the translational invariance property +Xgl 1= B+agts(artas—ar—as)
(p(n+m,i,t)p(n"+m,j,t")y=(p(n,i,t)p(n’,j,t")). From
the formal solution to Eq3.1) and by using standard kinetic 3.9
theory methods, one can get the following expression for th? .
diffusion coefficient4,15]; or the hexagonal I_attlce rotator model. In the.above equa-
tions we have restricted ourselves to models with equal con-
1/1 centrations of right and left scatterers, i.eg=x =(1
D=%lg > a-e(ly)—1], (B3  —xp)/2.
h Predictions from Eq¥3.8) and(3.9) are indeed very poor
where [12], except for those models where no backscattering is pos-
sible (8=0 andxg=0), in which case no correlated trajec-
1 tories exist on a Cayley tree. Moreover, the Boltzmann ap-
r=-—— (3.4 proximation does not predict any percolation threshold in
2 C,Ta models with pure backscattererssf~0). Since the absence

of diffusive percolation is a consequence of the trapping of
particles in finite clusters surrounded by pure backscatterers,
it cannot appear if we do not take into account correlated

Caij=Ca00j, Taij=Waij— & - (3.5 trajectories.

is the kinetic operator and

In the particular case of models on squade=@, b=4) or B. The repeated ring approximation
hexagonal =2, b=6) lattices, the general expression for

the diffusion coefficient3.3) in the low-density limit simpli- In order to explain the diffusive behavior of lattice Lor-

entz gases with a percolation threshold, we need to take into

fies to[4] account the correlated sequences of collisions. The simplest
1 sequences of this kind are the so-called ring collisions, in
D*=Z()\l’1+ Ao ta), (3.6 which the particle experiences uncorrelated collisions be-
tween successive visits to the same scatterer. First, it is con-
Where)\Il and )\5_11 are the eigenvalues of the Operatorvenlent to define the ring operatBrso that the elemerR;

p(T') corresponding to the eigenvectols,) and |y 1), r(ipres_?nts_ t_f;ezjtag r;aturn pLOba't':mté/ W|thtarr|vallve_ItOC|t3q
respectively. In the case of scatterers with rotation symmetr){? a site visited betore, when ItS departuré velocity Wwas
* As in the case of the kinetic operatbr the ring operator is

(eg. ro'_[ator moqej No-1= A7, wh|Ie.|n the case of scat- also defined in a quenched configuration of scatterers. Both
terers with reflection symmetrie.g., mirror model both\ ; . .
trl]uctuatlng operators are simply related [y}

and\,_, are real. In case the system has on average bot
rotation and reflection symmetries, ;=X\1. 1
R=q 2 [S(@)—-1+A] (310
A. The Boltzmann approximation a

This is the simplest mean-field approximation for the cal-whereAEF’lz —2,C,T, is the collision operator$;;(q)
culation of the diffusion coefficient. The Boltzmann approxi- =€'%"%§;; is the streaming operator in Fourier space, and the
mation is equivalent to assuming that at every time step thg sum extends over the first Brillouin zone of the reciprocal
configuration of scatterers is chosen randomly among the séttice.
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The RRA developed in Ref4] is a mean-field theory —1), which is half the value obtained by means of simple
much more refined than that of the Boltzmann approximaarguments of percolation theofg0].
tion. It consists of replacing the average valié) in Eq. For the sake of illustration, we give below the RRA pre-
(3.3 by A 1, whereA is a nonfluctuatingeffectivecollision ~ dictions in some representative cases. In the deterministic

operator defined in terms of affectivering operatorR by ~ "otator model &;=1, a;=a3=5=0), one has

S _ _ . 1 [1-3xg a1
A==p2 Xa(Tat TaRTa+ TaRTRT - -) “5i—xg N Trxg" (3.16
Ta For the model of isotropic scatterers both in square and hex-
:_Pg Xal—ﬁTa' (3.11 agonal lattices ¢;=--- =ap_,=B=b"1),
In order to conclude the description, a second condition is D* _b-1 1- Z(b_l)x (3.17
needed. In the RRA this is provided by E§.10 with Rand 2b b—2 "B '

A replaced by their effective counterparts, i.e.,
1 For the forward isotropic modela(=a,=az=3%, 8=0),
Rzﬁé [S(a)—1+A] % (3.12 3
D*:Z(l—SXB). (3.18
Consequently, the eigenvalua§1, /=01,...b—-1, of
p(T") are approximated by the reciprocals of the eigenvalueginajly, in the case of the quasi-isotropic mirror model (

of p~ 1A, with the resulf4] —ay=B=1, az=0),
XaTa/ 2
)\/:z ﬁ’ (3.13 D* — 27°+5z+2
a /Tas 22(4+52z)(1+2zxg)’
1 1 : lov2 _ 1
_§+§Z, / =even 2+ 3xg+ VIXg— 12+ 12 (3.19
z= . .
r,= 11 (3.14 2(1-3xg)
——+4+-z71, /=odd
2 2 These examples show thBt* —0 asxg—(b—2)/2(b—1).

. The predicted value of the critical exponent defined1ird)
wherer,,/=1—w,, are the eigenvalues of T,, r are the js ;=1 for the stochastic models ang=3 for the deter-
eigenvalues oR, andz is a parameter that verifies the alge- ministic rotator model. Note that in the latter model the exact

braic equation value isu=2.
(+) (=)
Tas _ -1 Tas _ C. An alternative mean-field approximation
2 x|z 2+(z-1)r,, ° 2 1 =0,
a /0 Tas 7 2H(z )Ty, The poor predictions of the RRA in models with a perco-

(3.15 lation threshold can be traced back to E8.12, where the

effective ring operator is connected to the effective collision
N - operator through the same relation that holds between the

e e vt b Ty, 052 16 o Coesponding fcueting operators, £6.10. Fom Eas

limit ) —o0 have already been taken. It is interesting to noteiz'i)héi'ls)’ ;sns%gélt:)é vaﬁhct?]r; Si?etrk])?ct(r;iz;?grtgrbszuiuon to

that in the case of the models introduced in Sec. Il, the pa-1 b-1°¢ the p o B2

rameterz does not explicitly depend on the fraction of right In the vicinity of the fraction XB_(b__lz)/?(b_ 1), Eq.

or left scatterers, but only on the concentration of pure back(3:19 yields z~[(b—2)/2(b—1)—-xg] ", /=12,...Db

scatterersxg . - 1 so that the diffusion coeffluent given by E@®.6) van-
The RRA reduces to the exact result of van Beijeren andS€s at the RRA percolation threshoig=(b—2)/2(b

Emst in the case of identical scatterp4s7] and is also exact — 1)- Thus, we conclude that this wrong valuexgfis built

for mixtures of symmetric scatterers without pure backscatiNto Eq.(3.12 or, equivalently, Eq(3.15.

terers, according to comparison with simulation resi. In order to overcome the above difficulty, we propose

On the other hand, its predictions are very poor for anyhere a mean—fleld ap_proach different from that.of th(_a previ-

model including backscatterergg#0). As said before, in OUS subsection. In this new approach, the relationghipl)

these models the backscatterers act as obstacles to partitletween the effective operatofs andR is kept. Neverthe-

diffusion so that ifxg is larger than a threshold valug the  less, instead of using E(8.12), we express the ring operator

diffusion coefficient vanishes. While the RRA succeeds inR as

predicting the existence of this percolation threshold, which «

is associated with the roagt—< in Eq. (3.15), it gives a bad = 2, v3 _

estimate for its numerical value, nameby§=(b—2)/2(b REXEXTAXT =175 (3.20

where the subscripts denote a summation over evendr
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where X;; is the (effective first return probability with ve- | ' ' '
locity g to a given site that was left by the particle with 04 S i
velocity g . In the particular case of Cayley trees, only those g
elements ofX with indicesi andj corresponding to opposite 0.3r "o ]
directions are nonzerd;;=Xd; j+p2, Wherex is the first 8
return probability summed over all possible initial and final D 02t .0 . .
velocities. As a consequence, the eigenvalueR afe o .
0.1} 1
(- /=01,...b—1. (3.2 l,.Sem.“
r =, ~=0,1, ... —1. . X 1 K} 1
- (-1)x %90 02 0.4 0.6 0.8

Ap

Note that Eq(3.21) is equivalent to Eq(3.14) if the param-

eterz is identified as FIG. 3. Diffusion coefficient for the isotropic model on the hex-

agonal lattice §;="- - - =as=B= %). The Monte Carlo data points
1+x are denoted by open circles. The dotted line corresponds to the
7= (3.22 repeated ring approximation and the closed circles are obtained
1-x from the mean-field theory relation betweBrf andx, Eq. (3.249),

by using the simulation results afas input.
Thus, the mean-field approximation developed in this paper

differs from the RRA only in the fact that, instead of using

Eq. (3.15, the first return probabiliti will be obtained by D* = 1-x 3tx (3.25
independent reasoning. 4(1+x) 1+2Xg—X(1—2xp)
The meaning of Eq(3.20 is clear. The total return prob-
ability is expressed as the sum of the first return probability, 1—x 9—x2
the second return probability, and so on, whererttiereturn D* (3.26

probability is assumed to be the first return probability raised 2(14x) (9+X)[1+xg=X(1=xg)]"

to the nth power. This implies the absence of correlations

between the returning probabilities along all the particle trafor the deterministic rotator modelag=1, a,=a3=;
jectories. This assumption is not correct in general, but it=0), the model of isotropic scatterers on both square and
yields good results, as will be shown later. Moreover, if all hexagonal latticesd;=- - - =a,,_;=B8=b"1), the forward

the scatterers are identical, then the same first return probsotropic model &;=a,=a3=%, B=0), and the quasi-
ability can be assigned to every trajectory, since this quantitysotropic mirror model &;=a,=8=%, a3=0), respec-

is independent of the specific form of the path and onlytively. It is important to remark that the mean-field predic-
depends on the scattering rules of the scatterers that the pajon (3.23 differs from the low-density limit of the exact
ticle finds along its path. So, E(3.20 is exact for the case result(1.6). Nevertheless, the relative error of B§.23 is

of identical scatterers. As a matter of fact, relatidB20  |ess than 4% in the interval<Oxg<0.6. The relative error

and(3.22) were already found in Ref4] in connection with  increases near the percolation threshold since(&g3 pre-
the identical scatterer limit of the RRA. Since we know thatd|cts thatD* vanishes with a critical exponem: 1' while

the RRA gives the exact diffusion coefficient in this limit, the exact value ig=2.
the theory proposed here will also be exact in that case. An The mean-field approximation characterized by Egs.
analogous situation takes place in models without backsca(g_m and (3.20 or, equivalently, Eqs(3.13 and (3.20) is
terers. If all the scatterers are right or left rotatées mir- ot complete unless we propose an approximate scheme to
rors), the set of scattering probabilities is the same for bothgptain the first return probability for a given model. This is
species, except for a symmetry rule. This means that the firgfone in Sec. IV, where a renormalizable mean-field theory
return probability is also independent of the specific configu+tor the calculation ok is developed. Before that, however, it
ration in this case, so that it is independent of the fraction ofs instructive to compare simulation results@f (see Sec.
right (or left) scatterers. This property is.also verified bin V) with those obtained from Eq¢3.6), (3.13, and(3.21), by
Eq.(3.19 and Eq.(3.22 also holds for mixtures of symmet- ysing the correspondingimulation results forx. Figure 3
ric scatterers. Thus, the predictions of the RRA and thehows such a comparison in the case of a model of isotropic
theory presented herg coincide in.this case Wik 0. _ ~ scatterers ;= - - - = as=B=1%) plus backscatterers on the
To be more specific, let us write down the relationshiphexagonal lattice. The RRA predictions are also shown. For
between the reduced diffusion coefficient, £8.6), and the  x_<0.1 both theories agree well with the simulation results.
first return probability for the same examples as in the pregor |arger concentrations of backscatterers, however, the

ceding subsection. The results are RRA rapidly deviates from the simulation results, while our
approximation exhibits quite good agreement. On the other
D* 1-x 1+x? hand, we must emphasize that the mean-field approximation

T 2(1+x) (14 x2)(1+Xg) — 2X(1—Xg) (3.23 represented by the closed circles in Fig. 3 is still semi-
empirical, since the simulation results fothave been used
1—x 1 as input. The self-contained approximation constructed from
_ , (3.24) the theoretical analysis of Sec. IV will be compared with
2(1+x) 1+xg—x(1—Xp) simulations in Sec. V.

D*
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IV. FIRST RETURN PROBABILITY three terms: the firstthird) term corresponds to a particle

. . L that is deflected to the righteft), returns toR, and then is
The first return probability on deterministicCayley tree deflected to the leftright), so that it finally returns to the

with rotators and backscatterers defined on a lattice with co="" .
ordination numbeb is simply given by the root of origin; the second term corresponds to a particle that, after

being transmitted, returns t& and is again transmitted.
x=Xg+(1—xg)xP" 1, (4.1  Equation(4.3g can be explained in a similar way. The ex-

plicit relations (4.3) are sufficient to convince oneself that

which is a straightforward generalization of Hd.7). Equa-  the general relation can be written as

tion (4.1) means that there are two excluding possibilities for

the return of the particle to the origin: eithén the first

scatterer found is a backscatterer, so that it returns for sure, Yn(X1,X2,X3) = @' - §,(X1,X2,X3), (4.9

or (ii) the first scatterer visited is a rotator and then the par-

ticle has to visit the otheb—1 branches of the Cayley tree

starting from the rotator in strict order until it finally returns where

to the origin, which happens with probabilif ~*. The first

event has a probabilityg, while the probability of the sec-

ond event is +xg . By differentiating both sides of E¢4.1) a,

with respect tox and then makingc=1 we obtain the per- _

colation thresholdkg=(b—2)/(b—1). The situation in sto- a=| %2 4.9

chastic models is more complicated, since the moving par- as

ticle can visit the same branch of the Cayley tree many times

before returning to the origin. A simple mean-field approach

to this problem was given in Reff11]. Here, we extend that and{,(X;,X,,X3) satisfies the following recurrence relation:

result and present a set of generalized mean-field theories

that give better and better predictions as larger and larger

clusters of the Cayley tree around the origin are averaged L1 =X M-L,=(X-M)"-X- o', (4.6)

exactly. For the sake of clarity, we consider in this section

the case of the rotator model on the square lattice only. Ex-

tension of these results to the mirror model and to the hexwith

agonal latticgor lattices with a higher coordination numper

are straightforward and given in Appendix A.

Xl 0 O ,8 aq ay
A. First return probability in a quenched configuration X=[ 0 x 0|, wM=|a3 B o],
Consider now the functiorf(x;,x,,X3) defined as the 0 0 X a, az B
probability of the first return to the origin, in quenched
configuration, provided that the first scatterer visited by the
moving particle is a right rotatdiR) and that the return prob- s

abilities to that scatterer along the remaining three branches
of the Cayley tree are;, X,, andxs (in counterclockwise a'=| az|. 4.7
ordep. This function can be written as the following sum:

o0

f(Xq,X5,X3)= X1,X5,X3), 4.2
(X1,%2,%3) nZO YalXe Xz Xs) 42 From Eqgs.(4.2), (4.4), and(4.6), we have

where y,(Xq,X5,X3), n=0,1,2 ..., is thefirst return prob-

ability aftern+1 visits toR. A simple path counting yields *

f(X1,X2,X3) =B+ >, a'-(X-M)""1.X. o'
n=1

Yo=8, (4.33
=B+a’-(1-X-M)"1.X-a'. (4.9

’)/126!1)(1(13'*‘ a2X2a2+ a3X3CE1, (43b)
Vo= a1X1( BXia3+ a1 Xoa+ aoXzay) Inserting Egs(4.5) and(4.7) into Eq.(4.8), we explicitly get

+ axXo(azXiaz+ BXoar+ ayXzaq)
+azXs(axXazt agXaart BXzay). (430 F(Xq X0, Xs) = B+ % 4.9
X1,X2,X3

Thus, y, corresponds to a particle which after colliding with
R is directly backscattered. The probability of first return
after two previous visits td&R, y4, is written as the sum of where
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0(X1, X2 Xg) = a1 gXa(1= BXa) (1= BXa) + aXo(1— BX) (1= BXa) T ayargXa(1— BXy) (1= BXo) + arp( @i+ af)
X[(1= BxXg)XaXot (1= BXo)XgXa (1= BX)XXa] +[(af — a3)*+ a5(4aras— ad) IxpXoXs (410
and
A(Xq,X2,X3) = (1= Bx1)(1— BXy) (1— BX3) — ap( a2+ ad)X1XoX3— a5X1X3(1— BX,) — ayagXoXs(1— BXq)
— apazX X(1—BXz) (4.1

is the determinant oK- M.

As a simple test of consistency, notice thH#@l,1,1)=1, i.e., if the particle always returns ® along any of the three
outgoing branches, then the probability of returning to the origin is 1. The general expréédpisimplifies in some
interesting cases. For instance, in the particular case of isotropic scattefersif= a3=[8=73), one easily gets

1
f(Xl,Xz,X3): m (412)
In the case of forward isotropic scatterets, € a,=az=3%, 8=0), Eq.(4.9) becomes
(X1t Xot+ X3) + 2(X1Xo+ X1 X31 XoX3) +X1XoX3
f(XliX2|X3): (413

27— 3(X1Xo+ X1X3+ XoX3) — 2X1XoX3

As a third example, let us consider the deterministic rotatoreturn probability along that path will be taken as 1; in the

model (@;=1, ay,=a3=B=0), in which case (X;,X5,X3) case where one of the nearest neighbors of the first scatterer

=X1X9X3. visited is a rotator, the probability of return along that path
The functionf(x;,X,,X3) corresponding to those trajec- will be assumed to be

tories with a left rotatoL) as the first scatterer found is the

same for these models as the one correspondirfg faro- X7 X

vided that the branches with return probabilitigs x,, and y= 1-xg’

X3 are now considered in clockwise order.

(4.16

An average over all the possible configurations of the nearest
B. Average first return probability neighbors of the first rotator visited by the moving particle

_ _ ) yields the following equation fox:
From the definition off (x;,X,,X3) it is obvious that the

(averagefirst return probability satisfies the following equa- x=xg+(1—xg)X3F(1,1,1) + (1—xg)3f(y,y,y)
tion:
+xa(1—xg)[f(L,1y)+f(1y,D+f(y,1,1)]
x=xg+(1=xXg)(f(x1, Xz Xs)), (414 Y
, +xg(1-xg)Tf(Ly,y) +f(y,Ly) +f(y,y. D]}
where the brackets denote an average over all possible con-
figurations. Indefinitely ramified Cayley trees are included in (4.17

this average, so that it is not possible to compute it exactly.l.
Obviously, (X;)=(X,)=(x3)=x. On the other hand, al-
though x;, X,, and x5 are statistically independent, i.e.,

he meaning of Eq(4.17) is clear; the first term on the
right-hand side corresponds to the collision of the moving
NN T S A\ 4 o particle with a backscatterer after leaving the origin; the sec-
(X7 = OGN (X5%), one has(x; ") #X™, ni>1.  gnq term corresponds to those trajectories where the particle
The simplest mean-field approximation is obtained by subcollides first with a rotator and then encounters three back-
stituting every branch of the Cayley tree starting from thescatterers on the branches of the tree, so that the particle
first scatterer visited by an average branch with an averaggturns to the origin with probability(1,1,1)=1; the third
return probability. In this approximation(f(x;,X;,X3))  term corresponds to the case where the first scatterer is a
—F((x1),(X2),(X3)) = f(X,x,x) and Eq.(4.14) becomes rotator and its nearest neighbors are also rotators. The other
terms have similar interpretations. Inserting E4.16) into
X=Xg+(1=xg)T(x,X,X). (4.19 Eq. (4.17), we get a closed equation farwhose solution is
expected to be a better estimate of the first return probability
than the solution of Eq4.15.
More generally, we can write th@th-order approximation
in the form

The mean-field theory4.15, which we will refer to as the
zeroth-order approximation to Ed4.14), was formulated
and analyzed in Ref{[11]. An improved (i.e., first-ordey
mean-field theory is obtained if we explicitly include in the
configurational average the nearest neighbors on the Cayley

tree of the first scatterer visited. If the nearest neighbor of the X:XB+(1_XB)E P(CY e (), (4.18
initial rotator along a given path is a backscatterer, then the Cn "
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® ® 1.0 ; . =
R E A N
@ @ ® ¥ 0.6F 3
1 T f(l,y,y) T 1 04k ]
® ® 0.2F 3
FIG. 4. A typical configuration of a Cayley tree to generation 0-%_0 02 04 0.6

n=2. The corresponding probability of first return to the origin is
f(1,f(1y,y),1), wherey is the first return probability on the as-
sumption that the first scatterer visited is a rotator.

Xp

FIG. 5. First return probability f?r the forward isotropic model
. . . on the square latticea;=a,=a3=3, B=0). The Monte Carlo
yvhere the sum runs over all possible Conflguratl{:ﬁ]s that data poir?ts are deno?(eld b)zl opgn 3;;ircﬂles. )The dotted line, broken
include thenth-order neighbors of the first rotator found, |ine and solid line correspond to the predictions of the mean-field
P(Cy) is the probability of that configuration, arfg (y) is  theory of ordersi=0, n=1, andn=2, respectively.
the corresponding first return probability. Of course,
2 P(C,)=1. For example, Fig. 4 shows a typical configu- mation, in three special cases: the deterministic rotégor
ration corresponding ton=2. The probability of Gunn-Ortim) model, the de_terministiq mirrdior Ruijgrok-
that configuration is P(C,)=x3(1—xg)® and fe (¥) Cohen model, and stochastic models in the absence of back-
—f(LF(1y,y).1). An example of third-order configuration 'scatt'erers.'ln the_lat.ter case, moreover, the theory developed
can be obtained from the second-order configuration of Fig"" this section coincides with the RRA.
4 by assuming that the two outermost rotators are sur-

rounded, for instance, by three rotators and by one rotatoV. COMPARISON WITH MONTE CARLO SIMULATIONS
and two backscatterers, respectively. In that cat) In order to test the reliability of the theories developed in

:Xg(l_XB)7 andfcs(y)=f(l,f(l,f(y,y,y),f(y,l,l)),]). In Secs. lll and 1V, the diffusion coefficient and the first return
general,f; (y) can include up to levels of nested func-  probability have been measured by means of Monte Carlo
tions. The number of terms on the right-hand side of Eqsimulations performed on Cayley trees. We have used the
(4.18 increases withn faster than exponentially. In a Cayley Cayley tree method discussed in Réfkl] and[12]. Rather
tree of coordination number equal by the numberN,, of  than performing simulations on a regular lattice for finite
different configurations involving up to theh generation of and then taking the limip—0, we have directly worked in
neighbors  satisfies the recurrence relationV,  that limit by considering the scaled distande=pr and time
=3P LA™ =(1+N,_4)P7L, with A;=2°"1 so t*=pt, which become continuous variables in the lirpit
that log/\V,,=constx (b— 1)". Even when the number of con- —0. In the method we used, the scatterers already visited by
figurations essentially different can be reduced if the rotatorghe moving particle are labeled and a matrix is used to store
are sufficiently symmetric, only the theories of the lowestthe labels of the nearest neighbors of every scatterer placed
orders are manageable. In the next section we compare tlie the tree. If the particle is deflected along a path occupied
predictions fom=0,1,2 with Monte Carlo simulation results by a scatterer, the above matrix gives information on the type
for some models. of the scatterer to be found and on its distance from the
The renormalization scheme outlined in this section is stillprevious scatterer. In the case where the particle is deflected
useful to obtain some important properties of the first returralong a branch not previously explored, a new scatterer of
probability, such as the percolation threshold. In Appendix Btype a is placed with a probability equal o, and at a dis-
it is shown that the percolation thresholf is a fixed point  tancer* drawn from the Poisson distributidh(r*)=e‘r*.
of the renormalization transformation and takes the valu€Thus, the Cayley tree grows as the particle moves, so that the
xg=(b—2)/(b—1) for all models defined on a lattice of averages over configurations and trajectories are computed
cordination numbeb. It is also proved there that in the criti- simultaneously. We have evaluated the velocity autocorrela-

cal region[cf. Eq. (B14)] tion function®d (t*) att* = At*,2At*, ..., byaveraging the

dot productv(0)-v(t*) over a large numbeN of trajecto-

. 1 a%h,, ries. Then the reduced diffusion coefficieDt' is numeri-
I=x~AyXg=Xs), Ap =5 EY » "=l cally evaluated from the Green-Kubo formula

Xg=Xg,y=1

(4.19 1t 1 (tha

D*= lim Ef drd(r Zaf drd(7r). (6.1

whereh,(y,xg) is given by Eq.(B7). This implies thatD* t* oo 0 0

~Xg—Xg (i.e. u=1) in our mean-field theory, as seen, for

instance, from Eqs3.23—(3.26). In the regionxg<0.5 we have typically takedt* =0.1 and
As shown in Appendix B, Eq4.18 gives the exact first N=2X 10°, and the maximum simulation time was about

return probability, regardless of the ordemnf the approxi- t},=25. On the other hand, the diffusion coefficient is too
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Xp

FIG. 6. Same as in Fig. 5 but for the quasi-isotropic mirror FIG. 8. Diffusion coefflc.lent for the forvxllard isotropic model
model (a,= a =/3=l @;3=0) defined on the square latticex{=a,=a3=3, B=0). The re-
1= 8 T peated ring approximation prediction is shown as a dotted line, the

) _ theory presented in this paper corresponds to the solid line, and the
small forxg=0.5, so that a larger number of trajectories andopen circles are the results of the Monte Carlo simulation.

larger simulation times are required to get accurate values; in

this re.glon*we_ hg4ve use:N:lOB trajector|g§ ur_1t|I a maxi- gives an optimal compromise between simplicity and reli-
mum timet,,,=10". The first return probability is approxi-  apjjity. We have checked that a behavior similar to that of

mately computed in the simulations as the fraction of Palrigs. 5 and 6 is found for the model of isotropic scatterers on
ticles that return for the first time to the starting site before 8square or hexagonal lattices. In the latter case, since the co-

given timetg much larger than the average return time. Usu-grdination number is larger than in the case of a square lat-

ally, t5 =1500 is sufficient, except foxg very close toxg  tice and correlations become less likely, the theory with

[11]. Although this method always provides a lower bound=1 is seen to be sufficient. It is worth remarking that the

to the correct first return probability, the fraction of returning agreement between the mean-field theories and the Monte

particles not accounted for is exponentially small. Carlo results worsens, as expected, near the percolation
A comparison between the Monte Carlo simulation resultghreshold. While the theories with finite predict that -x

for x and the predictions of the mean-field theories d|scussectXcB_XB [cf. Eq. (4.19], the simulation results seem to in-

in the preceding section is performed in Figs. 5 and 6 for thgjicate a critical exponent larger than 1. Thus we speculate
square-lattice. models of forward isotropic scatterers anghai the amplituded,, in (4.19 goes to 0 agi— .

quasi-isotropic mirrors, respectively. In these figures, the | ot ys now consider the behavior of the diffusion coeffi-

dotted lines correspond to the zeroth-order mean-fielgignt |n Fig. 7 the simulation results Bf* for the determin-
theory, the broken lines to the first-order mean-field theoryistic rotator model are compared with the exact result, Eq.
and the solid lines to the second-order theory. The first—orde(r1.6)' the RRA prediction, Eq(3.16, and our mean-field

theory improves significantly tht_a predictions of the Zemth'theory, Eq.(3.23. While the original RRA can be trusted for
order theory already presented in Riff1]. The subsequent . — 0 2 only, our alternative mean-field theory is reliable in

improvement of the second-order approximation is still No-he rangex,<0.5; for greater concentrations of backscatter-

ticeable but less dramatic. In general, the convergence of the the predicted diffusion coefficient is too large as com-
nth-order approximation, E¢4.18), towards the exact result hareq with the exact result. There is no exact result for the
as n—e is expected to be very slow, so thai=2  giffysion coefficient onstochasticCayley trees. Thus it is

indeed rewarding to realize that the mean-field theory we
T have proposed in this paper provides a good estimate in all
the cases studied. This is illustrated in Figs. 8 and 9 for the
] forward isotropic model and the quasi-isotropic mirror

0.35
; 030
025
D" 020
O™ 610203 540506 07 015
X 0.10

0.05

FIG. 7. Diffusion coefficient for the deterministic rotator model .
on the square latticea(;=1, a22_a3:B:0). The l\_/lon'_[e Carlo _ 0-0(()).0 0105 0:3' 0405 06 o
data points are shown as open circles. The dotted line is the predic- x,
tion of the repeated ring approximation, the broken line corresponds
to the mean-field theory discussed in this paper, and the solid lineis FIG. 9. Same as in Fig. 8 but for the quasi-isotropic mirror
the exact result. model (a;=a,=B=3%, a3=0).
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model, respectively. The RRA predictiofdotted lineg are  backscatterers are absemiz&0), and only our theory re-
given by Eqs(3.18 and(3.19; the solid lines correspond to mains reliable whenever a percolation threshold exigts (
Egs. (3.25 and (3.26), supplemented by the second-order #0).
mean-field theory to determing although the use of the The mean-field theory proposed in this paper could be
zeroth-order theory, Eq4.15, already yields fairly good improved along several directions. First, the repeated ring
results. As expected, the agreement between the simulatiaxpression for the collision operator, E@®.11), could be
results and the theory developed in this paper becomes worgxtended to take into account nonring collisions, such as
near the percolation threshold. In fact, our mean-field apnested rings. Moreover, the purely mean-field ring operator
proximation predicts that the critical exponent defined in Eqin Eq. (3.20 could be modified to consider correlations be-
(1.8 is u=1, while the simulation data support the value tween successive visits of the particle to the same branches
n=2. of the tree. As for the determination of although the
scheme outlined in Sec. V admits in principle its systematic
VI. CONCLUDING REMARKS implementation to higher and higher orders, this is in prac-
tice hindered by the rapid increase of the associated algebraic
In this paper we have proposed a mean-field theory for theomplexity. Since we have used here the second-order ap-
diffusion coefficient of a particle moving on a Cayley tree, proximation forx, we can say that it implies a higher degree
whose sites are occupied by scatterers of several types, iaf refinement than that of Eq$3.11) and (3.20. In this
cluding a fractionxg of backscatterers. These backscatterersespect, it is worth noting that even when using the zeroth-
block the growth of the tree and are responsible for the aberder approximatiori4.15 one obtains fairly good estimates,
sence of percolation and diffusion if their concentration ex-the resulting theory having the same degree of algebraic
ceeds a certain critical valugg. The Cayley tree corre- complexity as in the RRA. Finally, it is tempting to speculate
sponds to the low-density limit of lattice Lorentz gases withthat the methods proposed in this paper might have a more
pointlike scatterers, except for the deterministic cpke. general interest that transcends the results obtained here for
The theory is built upon three independent mean-field assomewhat artificial models. However, the extension of these
sumptions:(a) the relationship(3.11) between an effective methods to real fluids does not seem straightforward and
collision operatorA and an effective ring operat®, which ~ deserves detailed study.
takes into account the so-called repeated ring collisi¢s;
the relationshifg3.20 between the ring operator and the first ACKNOWLEDGMENTS
return probability matrixX; and(c) a hierarchy of mean-field
theories for the first return probabilitydiscussed in Sec. V.
In the repeated ring approximation, on the other hand, a
sumptions(b) and (c) are replaced by the self-consistency
condition (3.12. While both theories are equivalent in the
absence of backscatterersgE0, in which case they give
the exact diffusion coefficieptthey strongly deviate from  APPENDIX A: FIRST RETURN PROBABILITY IN THE
each other agg increases. In fact, the RRA predicts that the GENERAL ROTATOR MODEL AND IN THE
diffusion coefficient vanishes forg equal to or larger than MIRROR MODEL
(b—2)/2(b—1), whereb is the coordination number, which
is half the value of the correct percolation threshefg= (b o
—2)/(b—1) predicted by our theory. Comparison with The rotator models defined in Sec. Il for square and hex-
Monte Carlo simulations for several models of rotators ordgonal Cayley trees can be easily extended to Cayley trees
mirrors with backscatterers has shown that the theory preZith any coordination numbep. If the moving particle col-
sented in this paper gives a very good approximation to thdides W|.th a generql rotator of this k|nd-, it will be.l_){;lckscat-
first return probability and the diffusion coefficient. An in- tered with probabilitys and deflected with probabilities, ,
teresting conclusion of the theory is that the diffusive perco?2: - -- » @»—1, Which are assigned to every direction in
lation thresholdfraction of backscatterers beyond which the counterclockwise order for right rotators and clockwise order
diffusion coefficient vanisheoincides with the percolation for left rotators. In a quenched configuration the branches
threshold(fraction of backscatterers beyond which the firstgrowing from these directions have the corresponding return-
return probability becomes)and that this value depends ing probabilitiesx,, ... X,_1, so that we can define a func-
only on the coordination number of the lattice and not on thelion f(xy, ... X,_1) giving the probability of first return in
collision rules for the scatterers included in the model. Theséhis configuration, provided that the first scatterer visited is a
predictions are confirmed by simulations. rotator. PrOCEEding as in Sec. Vv, it is easy to find that
It is interesting to point out that in the three mean-field f(X1, - . . X—1) is given by the right-hand side of E(4.8),
approaches considered in this paper the diffusion coefficierhere the generalizations of the matricesX, M, and o
is given by Eqs(3.6), (3.13, and(3.14). The differences are are straightforward. In the particular case of isotropic scat-
that in the Boltzmann approximatian=1 (which impliesx  terers @, =a,=ay,_;=B=b""), the result simplifies to
=0), in the RRAz is the root of Eq.(3.15, while in our b—1 | -1
theoryz=(1+x)/(1—x) with x being the root of Eq(4.15), | ho .
(4.17), or, more generally, Eq4.18. The three theories are fOx o Xo-1) (b ;1 X') ’ (A1)
identical when no retracing trajectories are possitfe=(Q
andxg=0, so thatx=0), the two latter theories coincide if which is the generalization of E¢4.12).

Partial support from the DGE&pain through Grant No.
$B97-1501 and from the Junta de Extremadura—Fondo So-
cial Europeo through Grant No. IPR98C019 is gratefully ac-
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1. General rotator model
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2. Mirror model

A line of reasoning parallel to that of Sec. IV shows that E@s2), (4.4—(4.6), and (4.8) are also valid for the mirror
model on the square lattice, except that the ma#tinow takes the form

B a3 ap
M=| az B a (A2)
a, a; B

andea’ = a. Also, X;, X,, andx; must be understood as the return probabilities along the branches with scattering probabilities
aq, ay, andag, respectively. The final result is still given by E@.9), but now

9(X1,X2,X3) = a2X1(1— BXo) (1— BX3) + a5Xa(1— BX1)(1— BXa) + adXg(1— BX) (1— BX,) + 2@y apas] (1— BXa) X Xy

+ (1= Bxo)XaXa+ (1= BX1)XoXz] — [ (af— af)?— ad(2ai+2a5— ad) X1 XoX3, (A3)

A(Xq,Xg,X3) = (1= BX1) (1= BXo) (1 — BX3) — 2t ap@aX1XoX3— 5X1Xa(1— BXo) — @iXoXa(1— BXq) — adX1Xa(1— ﬂxs()- :
A4

In the case of what we have called the quasi-isotropic mirror magg:@,=B8=3, a3=0), we simply have

9—X3(3+ X1+ Xy) — X1 Xo+ X1 XoX3
27— 9(Xq+ Xo+ X3) + 3X1Xo+ X1 XoX3

f(X1,X2,X3) = (A5)

In the trivial case of the deterministic mirr@Ruijgrok-Cohen model (@;=1, a,=a3=B=0), one gets(X;,X,,X3) =Xj.

APPENDIX B: PERCOLATION THRESHOLD IN A CAYLEY TREE

The objective of this appendix is to prove by induction that the percolation threstialgredicted by the mean-field theory
expressed in Eq4.18 is independent of and takes the value;=(b—2)/(b—1) for models defined on a Cayley tree with
coordination numbeb. We only consider here the cake=4 for simplicity, but the generalization to any value lofis
straightforward. Equatioid.17) for x in the mean-field theory of order=1 can also be written as an equation fG& (X
—Xg)/(1—xg), the probability of first return along a path whose first scatterer is a rotator. If we define the function

d1(y,xg)=y—h4(y,Xg), where

hl(yixB)EXg+(l_XB)sf(yiny) +Xé(1_XB)[f(lyly)+ f(layal) + f(yal71)]+XB(1_XB)2[f(1vyvy) + f(y,l,y)+ f(y,y,(l)],)
Bl

then Eq.(4.17) can be written as af(X1,X2,X3)

o =1, =123, (B4

x1:x2:x3:1
$1(y,Xg)=0. (B2
that follows from Eqs(4.9—(4.11). Equation(B4) implies

A mathematical solution of this equation for any valuexgf A (y.11)

isy=1. This is in fact thephysicalsolution if xg=Xg, (Where A =1, (B53)
the percolation thresholdy is here assumed unknoyyn a Iy
while a rooty<1 is the physical one in the intervaig
<x§. This means thatp;(y,xg) = (1—y) $1(y.Xs), Where af(y,y,1)
$1(y=1xg=x5)=0, so thaty—1 whenxg—x from be- Ty =2, (BSb)
low. Consequently, the following condition holds: y=1
at(y.y.y)
—_— =3, (B50)
w 0. (B3) Nl
y xB=xg,y=l

plus all the relations obtained from the above ones by per-
mutation of the arguments éf From these results an@3)
This equation determines the percolation threshgfd, In we get 1-3(1—xg) =0, which yieldsxg=3.
order to calculate the derivative {iB3) we need the result The theory of orden is expressed through the relation
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dn(Y,Xg)=y—hn(y,Xg)=0, (B6) Now we will prove by induction that
where
dhy(y,X
—”(;; 9 a1 xg) (BY)
y=1
ha(y.xe) =2 P(C)fe,()- (B7)
The condition forxS, is obtained from First, Eq.(B9) is obviously true fom=1, as seen before.
Next, sinceh,(y,xg) represents the first return probability
ddn(Y,Xg) provided that the first scatterer visited is a rotator, we can
oy =0. (B8)  decompose it in a similar way to that employed to write Eq.
Xg=Xg y=1 (4.17), so that Eq(B7) is equivalent to

ha(y:xe) =(1-xe)° 2 2 2 P ) PG PG (Te, () Te, (9. Fe () +X6(1-xp)?

nlCnlc 1

X 2 2 PC)PCnlF e, () fe, (I (1) LEe, M+, ,(1).fe ,(9).D]

nlC

n—-1
+x5(1=xg) 2 P(Co-p)[f(fe (V) LD+FAfe (). D+FA1fe  (y)]+X3. (B10)
n—1
|
Thus, making use of EqB4), we easily get Before concluding this appendix, it is worth taking advan-
tage of Eq.(B10) to prove that the solution of EGB6) is
dhn(Y,Xg) dhn_1(Y,Xg) independent oh in some special cases. First, consider the
ay =3(1-xg) ay - (B1) deterministic rotator model. In that casd(x;,X,,X3)
y=1 y=1 =X1XoX3, SO that Eq(B10) becomes
This completes the proof that EB9) holds for arbitraryn. ha(Y,Xg) =[Xg+ (1—Xg)hn_1(y.Xg) I°. (B15)
Therefore, the solution of E¢BS8) is xg=3, regardless of ) o ) )
the ordem of the approximation. Thus, the solution of EqB6) coincides with the solution of
Since Eq.(B4) also holds in the stochastic mirror model, the cubic equation
the same result can be found in that case. By proceeding y=[xg+(1—xg)y1]%, (B16)
along similar lines in the case of models with a coordination
numberb, we obtain which is equivalent to the exact equati¢h?), for arbitrary
n.
ahn(y,Xg) B n n As a second application, let us consider models without
ay l_(b_l) (1-xg)", (B12) backscatterersxg=0). Equation(B10) then becomes
y=

» ) hn(y)=f(hn-1(y),hn—1(y),hn—a(y)), (B17)
which implies xg=(b—2)/(b—1). Near the critical point

we can expandb, as so that Eq(B6) is equivalent to
y=f(y.y.y) (B19)
2¢n & ¢n
én(Y Xe)~ 5 — (y—1)2+(9x p for arbitrary n. It is possible to prové11] the equivalence
07y xg=x5,y=1 y Xg=Xg,y=1 between Eqs(B18) and(3.15, where in the latter we must
makexg=0 andz=(1+y)/(1-vy).
X (y—1)(Xg—Xg), (B13 Finally, let us consider the deterministic mirror model, in

which casef (x1,X5,X3) =X;. Thus, Eq.(B10) yields
where we have taken into account tifaf(1,xg) =0, as well _
as Eq.(B8). Now Eq.(B6) yields hn(Y,Xg) =Xg+(1—Xg)h,_1(Y,Xp) (B19

and Eq.(B6) is equivalent to

1-y~(b—1)A,(x—xg), A1l
y=~( )An(Xg—Xg) n y=Xg+(1—Xg)y (B20)
1 4°h,

|X xC y=1 n=1. (B14)  for any n, whose solution is(provided thatxg#0) x=y
2n O’)y BT Xg Y™

=1.



PRE 60 DIFFUSION IN LATTICE LORENTZ GASES WITH A.. .. 1323

[1] M. H. Ernst, inLiquids, Freezing and Glass Transitigredited [6] G. A. van Velzen and M. H. Ernst, J. Phys.2R&, 4611(1989;

by J. P. Hansen, D. Levesque and J. Zinn-Ju&leevier Sci- M. H. Ernst, G. A. van Velzen, and P. M. Binder, Phys. Rev.
ence Publishers, Amsterdam, 199fp. 43—143. A 39, 4327(1989.
[2] Discrete Kinetic Theory, Lattice Gas Dynamics and the Foun- [7] H. van Beijeren and M. H. Ernst, J. Stat. Phy®, 793(1993.
dations of Hydrodynamicsdited by R. MonacgWorld Sci- [8] H. van Beijeren(private communication
entific, Singapore, 1989 [9] J. M. F. Gunn and M. Orflm J. Phys. A18, L1035 (1985.
[3]J. R. Dorfman and P. Gaspard, Phys. Re®1E28(1999; P.  [10] D. Stauffer and A. Aharony,ntroduction to Percolation
Gaspard and J. R. Dorfmaitpid. 52, 3525(1999; J. R. Dor- Theory(Taylor and Francis, London, 1994

fman,-M. H. Ernst, and D. Jacobs, J. _Stat. Ph§s. 497 [11] L. Acedo and A. Santos, J. Phys. 30, 6995(1997).
(Plr?gs'RM' HL' E;ZStAi'le;R'lEgorf-Tark Rd Nix, da::/‘lj a' éa“’bs’ [12] L. Acedo and A. Santos, Phys. Rev 5B, 4577(1994.
ys. Rev. Lett74, (1995; L. Acedo and M. H. EmSt, 15 £ & b cohen and F. Wang, J. Stat. P8, 445 (1995

Physica A247, 91 (1997). .
[4] A. J. H. Ossendrijver, A. Santos, and M. H. Ernst, J. Stat.[14] Th. W_' Ruijgrok and E. G. D. Cohen, Phys. Lett.1&3 515
Phys.71, 1015(1993. (1988; G. A. van Velzen, J. Phys. 24, 807 (1991).
' [15] G. A. Velzen, J. Phys. 23, 4953(1990; Ph.D. dissertation,

[5] D. Frenkel, F. van Luijn, and P. M. Binder, Europhys. Léf,

7 (1992. University of Utrecht, 199@unpublishegl



