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Diffusion in lattice Lorentz gases with a percolation threshold

L. Acedo and A. Santos
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 19 January 1999!

A mean-field approximation for the diffusion coefficient in lattice Lorentz gases with an arbitrary mixture of
pointlike stochastic scatterers in the low-density limit is proposed. In this approximation, the diffusion coef-
ficient is directly related to the first return probability of the moving particle in the corresponding Cayley tree
through an effective ring operator. A renormalization scheme for the approximate determination of the first
return probability is constructed. The predictions of this mean-field theory and those of the repeated ring
approximation~RRA! are compared with computer simulation results for models in which a fractionxB of the
scatterers are deterministic backscatterers, so that the diffusion coefficient vanishes beyond a certain percola-
tion thresholdxB

c . The approximation proposed in this paper is seen to be in good agreement with the
simulation results, in contrast to the RRA, which already fails to give the correct percolation threshold.
@S1063-651X~99!10807-9#

PACS number~s!: 05.20.2y, 05.40.2a, 51.10.1y
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I. INTRODUCTION

Lattice Lorentz gases have been often used as sim
models for nonequilibrium statistical-mechanical syste
@1,2#. Moreover, they have recently been studied from
point of view of the dynamical systems theory in order
analyze the connection between the macroscopic trans
properties, such as the diffusion coefficient, and the ch
properties of the microscopic dynamics@3#. In a lattice Lor-
entz gas, a particle follows ballistic trajectories on
d-dimensional regular lattice with a fractionr of the sites
occupied by fixed scatterers randomly distributed. Upon
ting a scatterer, the moving particle modifies its direction
motion according to a given set of stochastic~or determinis-
tic! collision rules depending on the type of scatterer.
example of a lattice Lorentz gas is the rotator model@4#, in
which a fractionxR of the scatterers are stochastic right r
tators, a fractionxL are stochastic left rotators, and a fractio
xB512xR2xL are deterministic backscatterers. The scat
ers that we will consider in this paper are pointlike, but oth
models with excluded volume scatterers have also been
fined @4,5#.

The main transport property in Lorentz gases is the dif
sion coefficientD(r), which is defined by the Einstein rela
tion

^r 2~ t !&'2dD~r!t, t˜`, ~1.1!

where the system has been assumed isotropic. In the ca
lattice Lorentz gases, the Green-Kubo formula for the dif
sion coefficient reads

D~r!5
1

d S (
t50

`

F~ t !2
1

2D , ~1.2!

where

F~ t !5^v~ t !•v~0!& ~1.3!
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is the velocity autocorrelation function. The brackets in E
~1.1! and ~1.3! denote an average over different trajector
in a given lattice realization, followed by a subsequent av
age over different realizations. The discrete nature of th
models gives rise to an important difference with respec
the continuous case, making the prediction forD in the Bolt-
zmann approximation incorrect even in the low-density lim
(r˜0) @6#. The reason for this is the contribution of corr
lated sequences of collisions appearing in any discrete m
with backscattering, which gives rise to one-dimensional
thologies. The contribution associated with these correla
trajectories has not been evaluated in general, except
some particular models. For example, van Beijeren and E
@7# used an analytical enumeration method to derive the
act expression for the diffusion coefficient in the case
identicalpoint scatterers on a Bethe lattice or Cayley tree.
the case of the rotator model on the square lattice withxR
51 or xL51, the exact result becomes

D~r!5
1

2r S Re
1

12v1
2

x

11x
2

r

2

12x

11xD , ~1.4!

wherex is the first return probability, which is obtained from
the cubic equation

152Re
x1v1

11xv1
1

x2v2

12xv2
. ~1.5!

In these equations,v1 and v2 are eigenvalues of the colli
sion matrixWi j ~See Sec. II!. Recently, van Beijeren has als
found the exact diffusion coefficient for thedeterministicro-
tator model on a Cayley tree@8#:

D~r!5
~12x!2

2r F 1

12x~12xB!
2

r

2G , ~1.6!

where the probability of first return is now given by th
following cubic equation@9#:

x5xB1~12xB!x3. ~1.7!
1310 © 1999 The American Physical Society
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PRE 60 1311DIFFUSION IN LATTICE LORENTZ GASES WITH A . . .
Equation~1.7! predicts thatx51 ~absence of percolation! if
the fraction of pure backscatterers is equal to or larger tha
critical valuexB

c 5 2
3 @9,10#. Beyond this percolation thresh

old, the particle becomes trapped in a finite cluster of e
blocked by backscatterers; as a consequence, the diffu
coefficient vanishes~absence of diffusive percolation!. As xB

goes toxB
c from below, Eqs.~1.6! and ~1.7! show thatD

vanishes as

D;~xB
c 2xB!m ~1.8!

with a critical exponentm52.
The threshold valuexB

c 5 2
3 must also be correct in th

case ofstochasticrotators, according to the following argu
ment@8,11#. A nonpercolating cluster consists of a collectio
of bonds with nodal points at the locations of the rotato
bounded in all directions by pure backscatterers. Con
quently, the precise nature of the rotators is unimportant
long as they allow a returning particle to explore all dire
tions from the nodal point. It is then appealing to look for
approximate simple relationship between the diffusion co
ficient and the probability of first return in lattice Loren
gases with a percolation threshold. This is one of the prim
objectives of this paper.

An analytical approximation for the reduced low-dens
diffusion coefficientD* [ limr˜0 rD(r) of any model with
a mixture of scatterers was given by Ossendrijver, San
and Ernst@4# by resumming all the contributions associat
with the so-called repeated ring collisions. The low-dens
diffusion coefficient given by the repeated ring approxim
tion ~RRA! coincides with the exact result of van Beijere
and Ernst in the case of identical point scatterers@7#. In Ref.
@12# we showed~by means of Monte Carlo simulations! that
this approximation is also exact in models without pu
backscatterers~for instance, including only symmetric spe
cies of right and left rotators or right and left mirrors!. Nev-
ertheless, the prediction of the RRA for any model that
cludes pure backscatterers was shown to be very poor, ex
if xB!1. In particular, this approximation predicts a diffu
sive percolation thresholdxB

c 5 1
3 for models defined on the

square lattice, while the simulations indicatexB
c 5 2

3 .
The aim of this paper is to propose a new mean-fi

theory for the diffusion coefficient in a Cayley-tree lattic
Lorentz gas with a mixture of point scatterers. This theo
keeps the excellent predictions of the RRA for the case
identical point scatterers and also in the absence of back
terers, but clearly improves the latter theory for percolat
models. It will be shown that the proposal made in this pa
predicts a percolation thresholdxB

c 5 2
3 (xB

c 5 4
5 ) for any sto-

chastic rotator or mirror model with backscatterers defin
on the square~hexagonal! lattice. This prediction is in excel
lent agreement with our Monte Carlo simulation results. T
theory is constructed upon the assumption that the relat
ship between the ring operatorR and the first return prob
ability matrix X that Ossendrijveret al. @4# found for identi-
cal scatterers,R5X/(12X), also holds for the general cas
This assumption can be justified by mean-field theory r
soning. In that way, we obtain a general relationship betw
the diffusion coefficientD* and the first return probabilityx.
This relation extends the exact result~1.4! for identical scat-
terers to any mixture of scatterers and also reduces to
a
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RRA in the absence of scatterers. On the other hand, it g
a prediction different from the exact result~1.6! for the de-
terministic case, although it is still a reasonable approxim
tion. To complete the picture, we need an approxim
scheme to obtainx for any given model. This problem wa
partially addressed in Ref.@11#. Here we extend the mean
field theory developed in Ref.@11# to a hierarchy of system
atic approximations.

The paper is organized as follows. The models studied
this paper are described in Sec. II. In Sec. III we make a b
summary of the Boltzmann approximation and the RRA, a
propose a new mean-field theory that gives us a relation
between the diffusion coefficientD* and the first return
probabilityx. This theory is not complete unless we also gi
an estimate of the first return probability. This is done in S
IV, where a sequence of improving mean-field theories fox
is derived. The extension of the results of Sec. IV A to t
general rotator model and to the mirror model is carried
in Appendix A. The demonstration thatxB

c 5(b22)/(b21)
is the exact percolation threshold for any stochastic mode
a lattice of coordination numberb is given in Appendix B.
The predictions of our mean-field scheme forx andD* are
compared with simulation results in Sec. V. The paper e
with some concluding remarks in Sec. VI.

II. DESCRIPTION OF THE MODELS

A lattice Lorentz gas model is defined by means of tw
ingredients: the geometry of the substrate lattice and the
ture of the scatterers. These scatterers occupy the lattice
a given densityr, the fraction of scatterers of typea being
xa , so that(axa51. At this point it is important to note tha
we are going to discuss only the low-density limit (r˜0) of
these models. In this situation the particle can return t
previously visited scatterer only with a velocity vector opp
site to the initial one, so that it follows trajectories along
Cayley tree. In contrast, whenrÞ0 there are also polygona
trajectories that contribute to the diffusion coefficient on t
same order as those of the Cayley tree. An equivalence
be established between the low-density limit ofstochastic
lattice Lorentz gases defined on a regular lattice with co
dination numberb and the Cayley tree with the same coo
dination number. This equivalence is not strictly true in t
deterministiccase because if a particle returns to the orig
along a closed loop, it will repeat that loop forever. Th
means that the polygonal trajectories cannot simply be
nored when the limitr˜0 is taken@13#. Nevertheless, we
can still define the deterministic Cayley tree model as
independent model, even if it does not adequately repre
the low-density limit of the corresponding lattice Loren
gas.

The collision rules for a given type of scatterera are
defined through ab3b collision matrixWa , whose element
Wai j is the probability that a particle with incident velocityej
will be deflected along the directioni. A diagram of the
collision rules for right and left rotators on the square latt
is sketched in Fig. 1. Here, the moving particle arrives at
scatterer site from the left. After hitting the right~left! rota-
tor, it has probabilities,a2 , b, a1, and a3512a12a2
2b of being transmitted, reflected, deflected to the rig
~left!, and deflected to the left~right!, respectively. Pure
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1312 PRE 60L. ACEDO AND A. SANTOS
backscatterers are defined as a special case of rotators
b51, a15a25a350. In the rotator model, a fractionxR
(xL) of the scatterers are right~left! rotators, and a fraction
xB512xR2xL are pure reflectors. The corresponding co
sion matrices are

WR5S a2 a1 b a3

a3 a2 a1 b

b a3 a2 a1

a1 b a3 a2

D , ~2.1!

WL5S a2 a3 b a1

a1 a2 a3 b

b a1 a2 a3

a3 b a1 a2

D , ~2.2!

WB5S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D . ~2.3!

The eigenvalues of these matrices are

vRl 5vLl* 5a21b~21! l 1a1il 1a3~2 i! l , l 50,1,2,3,
~2.4!

vBl 5~21! l , l 50,1, . . . ,b21, ~2.5!

where i is the imaginary unit. In the deterministic case (a1
51), this model reduces to the one introduced by Gunn
Ortuño @9#.

It is straightforward to generalize the rotator model
hexagonal lattices. In that case,

WR5S a3 a2 a1 b a5 a4

a4 a3 a2 a1 b a5

a5 a4 a3 a2 a1 b

b a5 a4 a3 a2 a1

a1 b a5 a4 a3 a2

a2 a1 b a5 a4 a3

D , ~2.6!

for right rotators andWL5WR
† for left rotators, where the

dagger represents the transpose. The eigenvalues are

FIG. 1. Right and left rotators on a square lattice. The mov
particle enters from the left and collides with the fixed scatte
The corresponding scattering probabilities are denoteda1 , a2 , a3,
andb.
ith

d

vRl 5vLl* 5a31b~21! l 1@a21a5~21! l #eil p/3

1@a11a4~21! l #ei2l p/3, l 50, . . . ,5. ~2.7!

In the above rotator models, the relevant eigenvectors for
computation of the diffusion coefficient areuw1&
5uvx1 ivy& and uwb21&5uvx2 ivy&, whereuva&, a5x,y, is
a vector ofb components defined asva i5eia , i 51, . . . ,b.
Note that the norm iŝw1uw1&5^wb21uwb21&5( iei•ei5b.

In the rotator model the action of a scatterer is defin
with respect to the direction of the moving particle. In th
mirror model the action is defined with respect to the orie
tation of mirrors in the lattice. In this model, there are thr
types of scatterers on a square lattice: right mirrors, left m
rors, and pure reflectors. The collision rules for right and l
mirrors are sketched in Fig. 2. Their collision matrices ar

WR5S a2 a1 b a3

a1 a2 a3 b

b a3 a2 a1

a3 b a1 a2

D , ~2.8!

WL5S a2 a3 b a1

a3 a2 a1 b

b a1 a2 a3

a1 b a3 a2

D , ~2.9!

with the eigenvalues

vR05vL051, vR15vL35122~b1a3!, ~2.10!

vR25vL25122~a11a3!, vR35vL15122~b1a1!,

and relevant eigenvectorsuw1&5uvx1vy& and uw3&
5uvx2vy&. Of course, in stochastic models witha15a3,
rotators and mirrors become identical scatterers. In the de
ministic case (a151) and in the absence of pure reflecto
(xB50), the mirror model reduces to the one introduced
Ruijgrok and Cohen@14#. The deterministic mirror model in
the presence of backscatterers does not exhibit diffus
since every trajectory is trapped between two backscatte
with intermediate collisions at the mirrors.

III. DIFFUSION COEFFICIENT

Let us define the one-particle distribution functio
p(n,i ,t), as the probability that, in a given quenched co
figuration of scatterers, the particle is at siten at time t with

g
r. FIG. 2. Same as in Fig. 1 but for right and left mirrors.
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a precollisional velocityei . This distribution function satis-
fies a Chapman-Kolmogorov equation

p~n1ei ,i ,t11!5S 12(
a

canD p~n,i ,t !

1(
a

can(
j

Wai j p~n, j ,t !, ~3.1!

wherecan is a Boolean variable that takes the value 1 if t
siten is occupied by a scatterer of typea, being 0 otherwise.
Obviously,^can&5xar, where the angular brackets denote
average over a site-independent distribution of scatterers
a quenched configuration, the average velocity of the mov
particle isv(t)5(n( i p(n,i ,t)ei . Thus, the velocity autocor
relation function can be written as

F~ t !5V(
n

(
i , j

ei•ej^p~n,i ,t !p~0, j ,0!&, ~3.2!

where V is the number of sites and we have tak
into account the translational invariance prope
^p(n1m,i ,t)p(n81m, j ,t8)&5^p(n,i ,t)p(n8, j ,t8)&. From
the formal solution to Eq.~3.1! and by using standard kineti
theory methods, one can get the following expression for
diffusion coefficient@4,15#:

D5
1

b S 1

d (
i , j

ei•ej^G i j &21D , ~3.3!

where

G52
1

(
a

CaTa

~3.4!

is the kinetic operator and

Cai j5ca0d i j , Tai j5Wai j2d i j . ~3.5!

In the particular case of models on square (d52, b54) or
hexagonal (d52, b56) lattices, the general expression f
the diffusion coefficient~3.3! in the low-density limit simpli-
fies to @4#

D* 5
1

4
~l1

211lb21
21 !, ~3.6!

where l1
21 and lb21

21 are the eigenvalues of the operat
r^G& corresponding to the eigenvectorsuw1& and uwb21&,
respectively. In the case of scatterers with rotation symm
~e.g., rotator model!, lb215l1* , while in the case of scat
terers with reflection symmetry~e.g., mirror model!, bothl1
and lb21 are real. In case the system has on average b
rotation and reflection symmetries,lb215l1.

A. The Boltzmann approximation

This is the simplest mean-field approximation for the c
culation of the diffusion coefficient. The Boltzmann approx
mation is equivalent to assuming that at every time step
configuration of scatterers is chosen randomly among the
In
g

e

ry

th

-

e
et

of possible configurations. In that way, all the correlatio
are destroyed and we can write

^G&5K 2
1

(
a

CaTa
L ˜2

1

(
a

^CaTa&

52
1

r(
a

xaTa

.

~3.7!

Consequently,l l ˜12(axaval , l 50,1, . . . ,b21. Mak-
ing use of Eqs.~2.4!, ~2.5!, ~2.7!, ~2.10!, and~3.6!, we get

D* 5
1

2
@12a21b1xB~11a22b!#21 ~3.8!

for the rotator and the mirror models on the square latt
and

D* 5
1

2 F12a31b1
1

2
~a11a52a22a4!

1xBF12b1a31
1

2
~a21a42a12a5!G G21

~3.9!

for the hexagonal lattice rotator model. In the above eq
tions we have restricted ourselves to models with equal c
centrations of right and left scatterers, i.e.,xR5xL5(1
2xB)/2.

Predictions from Eqs.~3.8! and~3.9! are indeed very poor
@12#, except for those models where no backscattering is p
sible (b50 andxB50), in which case no correlated trajec
tories exist on a Cayley tree. Moreover, the Boltzmann
proximation does not predict any percolation threshold
models with pure backscatterers (xBÞ0). Since the absenc
of diffusive percolation is a consequence of the trapping
particles in finite clusters surrounded by pure backscatter
it cannot appear if we do not take into account correla
trajectories.

B. The repeated ring approximation

In order to explain the diffusive behavior of lattice Lo
entz gases with a percolation threshold, we need to take
account the correlated sequences of collisions. The simp
sequences of this kind are the so-called ring collisions,
which the particle experiences uncorrelated collisions
tween successive visits to the same scatterer. First, it is
venient to define the ring operatorR so that the elementRi j
represents thetotal return probability with arrival velocityei
at a site visited before, when its departure velocity wasej .
As in the case of the kinetic operatorG, the ring operator is
also defined in a quenched configuration of scatterers. B
fluctuating operators are simply related by@4#

R5
1

V (
q

@S~q!211L#21, ~3.10!

whereL[G2152(aCaTa is the collision operator,Si j (q)
5eiq•eid i j is the streaming operator in Fourier space, and
q sum extends over the first Brillouin zone of the reciproc
lattice.
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1314 PRE 60L. ACEDO AND A. SANTOS
The RRA developed in Ref.@4# is a mean-field theory
much more refined than that of the Boltzmann approxim
tion. It consists of replacing the average value^G& in Eq.
~3.3! by L̄21, whereL̄ is a nonfluctuating,effectivecollision
operator defined in terms of aneffectivering operatorR̄ by

L̄52r(
a

xa~Ta1TaR̄Ta1TaR̄TaR̄Ta1••• !

52r(
a

xa

Ta

12R̄Ta

. ~3.11!

In order to conclude the description, a second condition
needed. In the RRA this is provided by Eq.~3.10! with R and
L replaced by their effective counterparts, i.e.,

R̄5
1

V (
q

@S~q!211L̄#21. ~3.12!

Consequently, the eigenvaluesl l
21 , l 50,1, . . . ,b21, of

r^G& are approximated by the reciprocals of the eigenval
of r21L̄, with the result@4#

l l 5(
a

xatal

11r l tal

, ~3.13!

r l 5H 2
1

2
1

1

2
z, l 5even

2
1

2
1

1

2
z21, l 5odd

~3.14!

wheretal [12val are the eigenvalues of2Ta , r l are the
eigenvalues ofR̄, andz is a parameter that verifies the alg
braic equation

(
a

xaFz(
l Þ0

(1)
tal

21~z21!tal

2z21(
l

(2)
tal

21~z2121!tal

G50,

~3.15!

where the subscripts denote a summation over even (1) or
odd (2) l values only. Upon deriving Eqs.~3.14! and
~3.15!, the low-density limitr˜0 and the thermodynami
limit V˜` have already been taken. It is interesting to n
that in the case of the models introduced in Sec. II, the
rameterz does not explicitly depend on the fraction of rig
or left scatterers, but only on the concentration of pure ba
scatterers,xB .

The RRA reduces to the exact result of van Beijeren a
Ernst in the case of identical scatterers@4,7# and is also exac
for mixtures of symmetric scatterers without pure backsc
terers, according to comparison with simulation results@12#.
On the other hand, its predictions are very poor for a
model including backscatterers (xBÞ0). As said before, in
these models the backscatterers act as obstacles to pa
diffusion so that ifxB is larger than a threshold valuexB

c the
diffusion coefficient vanishes. While the RRA succeeds
predicting the existence of this percolation threshold, wh
is associated with the rootz˜` in Eq. ~3.15!, it gives a bad
estimate for its numerical value, namely,xB

c 5(b22)/2(b
-

is

s

e
-

k-

d

t-

y

icle

n
h

21), which is half the value obtained by means of simp
arguments of percolation theory@10#.

For the sake of illustration, we give below the RRA pr
dictions in some representative cases. In the determin
rotator model (a151, a25a35b50), one has

D* 5
1

2~12xB!
A123xB

11xB
. ~3.16!

For the model of isotropic scatterers both in square and h
agonal lattices (a15•••5ab215b5b21),

D* 5
b21

2b F12
2~b21!

b22
xBG . ~3.17!

For the forward isotropic model (a15a25a35 1
3 , b50),

D* 5
3

4
~123xB!. ~3.18!

Finally, in the case of the quasi-isotropic mirror model (a1
5a25b5 1

3 , a350),

D* 5
2z215z12

2z~415z!~11zxB!
,

z5
213xB1A9xB

2212xB112

2~123xB!
. ~3.19!

These examples show thatD*˜0 asxB˜(b22)/2(b21).
The predicted value of the critical exponent defined in~1.8!
is m51 for the stochastic models andm5 1

2 for the deter-
ministic rotator model. Note that in the latter model the ex
value ism52.

C. An alternative mean-field approximation

The poor predictions of the RRA in models with a perc
lation threshold can be traced back to Eq.~3.12!, where the
effective ring operator is connected to the effective collisi
operator through the same relation that holds between
corresponding fluctuating operators, Eq.~3.10!. From Eqs.
~2.5!, ~3.13!, and~3.14!, we can see that the contribution t
l1 andlb21 associated with the pure backscatterers is 2zxB .
In the vicinity of the fraction xB5(b22)/2(b21), Eq.
~3.15! yields z;@(b22)/2(b21)2xB#21, l 51,2, . . . ,b
21 so that the diffusion coefficient given by Eq.~3.6! van-
ishes at the RRA percolation thresholdxB

c 5(b22)/2(b
21). Thus, we conclude that this wrong value ofxB

c is built
into Eq. ~3.12! or, equivalently, Eq.~3.15!.

In order to overcome the above difficulty, we propo
here a mean-field approach different from that of the pre
ous subsection. In this new approach, the relationship~3.11!
between the effective operatorsL̄ and R̄ is kept. Neverthe-
less, instead of using Eq.~3.12!, we express the ring operato
R̄ as

R̄5X1X21X31•••5
X

12X
, ~3.20!
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PRE 60 1315DIFFUSION IN LATTICE LORENTZ GASES WITH A . . .
whereXi j is the ~effective! first return probability with ve-
locity ei to a given site that was left by the particle wi
velocity ej . In the particular case of Cayley trees, only tho
elements ofX with indicesi and j corresponding to opposit
directions are nonzero,Xi j 5xd i , j 6b/2 , wherex is the first
return probability summed over all possible initial and fin
velocities. As a consequence, the eigenvalues ofR̄ are

r l 5
~21! l x

12~21! l x
, l 50,1, . . . ,b21. ~3.21!

Note that Eq.~3.21! is equivalent to Eq.~3.14! if the param-
eterz is identified as

z5
11x

12x
. ~3.22!

Thus, the mean-field approximation developed in this pa
differs from the RRA only in the fact that, instead of usin
Eq. ~3.15!, the first return probabilityx will be obtained by
independent reasoning.

The meaning of Eq.~3.20! is clear. The total return prob
ability is expressed as the sum of the first return probabil
the second return probability, and so on, where thenth return
probability is assumed to be the first return probability rais
to the nth power. This implies the absence of correlatio
between the returning probabilities along all the particle t
jectories. This assumption is not correct in general, bu
yields good results, as will be shown later. Moreover, if
the scatterers are identical, then the same first return p
ability can be assigned to every trajectory, since this quan
is independent of the specific form of the path and o
depends on the scattering rules of the scatterers that the
ticle finds along its path. So, Eq.~3.20! is exact for the case
of identical scatterers. As a matter of fact, relations~3.20!
and~3.22! were already found in Ref.@4# in connection with
the identical scatterer limit of the RRA. Since we know th
the RRA gives the exact diffusion coefficient in this lim
the theory proposed here will also be exact in that case.
analogous situation takes place in models without backs
terers. If all the scatterers are right or left rotators~or mir-
rors!, the set of scattering probabilities is the same for b
species, except for a symmetry rule. This means that the
return probability is also independent of the specific confi
ration in this case, so that it is independent of the fraction
right ~or left! scatterers. This property is also verified byz in
Eq. ~3.15! and Eq.~3.22! also holds for mixtures of symmet
ric scatterers. Thus, the predictions of the RRA and
theory presented here coincide in this case withxB50.

To be more specific, let us write down the relationsh
between the reduced diffusion coefficient, Eq.~3.6!, and the
first return probability for the same examples as in the p
ceding subsection. The results are

D* 5
12x

2~11x!

11x2

~11x2!~11xB!22x~12xB!
, ~3.23!

D* 5
12x

2~11x!

1

11xB2x~12xB!
, ~3.24!
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D* 5
12x

4~11x!

31x

112xB2x~122xB!
, ~3.25!

D* 5
12x

2~11x!

92x2

~91x!@11xB2x~12xB!#
, ~3.26!

for the deterministic rotator model (a151, a25a35b
50), the model of isotropic scatterers on both square
hexagonal lattices (a15•••5ab215b5b21), the forward
isotropic model (a15a25a35 1

3 , b50), and the quasi-
isotropic mirror model (a15a25b5 1

3 , a350), respec-
tively. It is important to remark that the mean-field predi
tion ~3.23! differs from the low-density limit of the exac
result ~1.6!. Nevertheless, the relative error of Eq.~3.23! is
less than 4% in the interval 0<xB,0.6. The relative error
increases near the percolation threshold since Eq.~3.23! pre-
dicts thatD* vanishes with a critical exponentm51, while
the exact value ism52.

The mean-field approximation characterized by E
~3.11! and ~3.20! or, equivalently, Eqs.~3.13! and ~3.21! is
not complete unless we propose an approximate schem
obtain the first return probabilityx for a given model. This is
done in Sec. IV, where a renormalizable mean-field the
for the calculation ofx is developed. Before that, however,
is instructive to compare simulation results ofD* ~see Sec.
V! with those obtained from Eqs.~3.6!, ~3.13!, and~3.21!, by
using the correspondingsimulation results forx. Figure 3
shows such a comparison in the case of a model of isotro
scatterers (a15•••5a55b5 1

6 ) plus backscatterers on th
hexagonal lattice. The RRA predictions are also shown.
xB<0.1 both theories agree well with the simulation resu
For larger concentrations of backscatterers, however,
RRA rapidly deviates from the simulation results, while o
approximation exhibits quite good agreement. On the ot
hand, we must emphasize that the mean-field approxima
represented by the closed circles in Fig. 3 is still sem
empirical, since the simulation results forx have been used
as input. The self-contained approximation constructed fr
the theoretical analysis of Sec. IV will be compared w
simulations in Sec. V.

FIG. 3. Diffusion coefficient for the isotropic model on the he
agonal lattice (a15•••5a55b5

1
6 ). The Monte Carlo data points

are denoted by open circles. The dotted line corresponds to
repeated ring approximation and the closed circles are obta
from the mean-field theory relation betweenD* andx, Eq. ~3.24!,
by using the simulation results ofx as input.



c

fo

u
a
e
s

-

a
e

c
t
r

rg
ge
io
E
e
r

th
-
h

th
rn
f

e

fter
.
x-
t

n:

1316 PRE 60L. ACEDO AND A. SANTOS
IV. FIRST RETURN PROBABILITY

The first return probability on adeterministicCayley tree
with rotators and backscatterers defined on a lattice with
ordination numberb is simply given by the root of

x5xB1~12xB!xb21, ~4.1!

which is a straightforward generalization of Eq.~1.7!. Equa-
tion ~4.1! means that there are two excluding possibilities
the return of the particle to the origin: either~i! the first
scatterer found is a backscatterer, so that it returns for s
or ~ii ! the first scatterer visited is a rotator and then the p
ticle has to visit the otherb21 branches of the Cayley tre
starting from the rotator in strict order until it finally return
to the origin, which happens with probabilityxb21. The first
event has a probabilityxB , while the probability of the sec
ond event is 12xB . By differentiating both sides of Eq.~4.1!
with respect tox and then makingx51 we obtain the per-
colation thresholdxB

c 5(b22)/(b21). The situation in sto-
chastic models is more complicated, since the moving p
ticle can visit the same branch of the Cayley tree many tim
before returning to the origin. A simple mean-field approa
to this problem was given in Ref.@11#. Here, we extend tha
result and present a set of generalized mean-field theo
that give better and better predictions as larger and la
clusters of the Cayley tree around the origin are avera
exactly. For the sake of clarity, we consider in this sect
the case of the rotator model on the square lattice only.
tension of these results to the mirror model and to the h
agonal lattice~or lattices with a higher coordination numbe!
are straightforward and given in Appendix A.

A. First return probability in a quenched configuration

Consider now the functionf (x1 ,x2 ,x3) defined as the
probability of the first return to the origin, in aquenched
configuration, provided that the first scatterer visited by
moving particle is a right rotator~R! and that the return prob
abilities to that scatterer along the remaining three branc
of the Cayley tree arex1 , x2, and x3 ~in counterclockwise
order!. This function can be written as the following sum:

f ~x1 ,x2 ,x3!5 (
n50

`

gn~x1 ,x2 ,x3!, ~4.2!

wheregn(x1 ,x2 ,x3), n50,1,2, . . . , is thefirst return prob-
ability after n11 visits toR. A simple path counting yields

g05b, ~4.3a!

g15a1x1a31a2x2a21a3x3a1, ~4.3b!

g25a1x1~bx1a31a1x2a21a2x3a1!

1a2x2~a3x1a31bx2a21a1x3a1!

1a3x3~a2x1a31a3x2a21bx3a1!. ~4.3c!

Thus,g0 corresponds to a particle which after colliding wi
R is directly backscattered. The probability of first retu
after two previous visits toR, g1, is written as the sum o
o-
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three terms: the first~third! term corresponds to a particl
that is deflected to the right~left!, returns toR, and then is
deflected to the left~right!, so that it finally returns to the
origin; the second term corresponds to a particle that, a
being transmitted, returns toR and is again transmitted
Equation~4.3c! can be explained in a similar way. The e
plicit relations ~4.3! are sufficient to convince oneself tha
the general relation can be written as

gn~x1 ,x2 ,x3!5a†
•zn~x1 ,x2 ,x3!, ~4.4!

where

a5S a1

a2

a3

D ~4.5!

andzn(x1 ,x2 ,x3) satisfies the following recurrence relatio

zn115X•M•zn5~X•M!n
•X•a8, ~4.6!

with

X5S x1 0 0

0 x2 0

0 0 x3

D , M5S b a1 a2

a3 b a1

a2 a3 b
D ,

a85S a3

a2

a1

D . ~4.7!

From Eqs.~4.2!, ~4.4!, and~4.6!, we have

f ~x1 ,x2 ,x3!5b1 (
n51

`

a†
•~X•M!n21

•X•a8

5b1a†
•~12X•M!21

•X•a8. ~4.8!

Inserting Eqs.~4.5! and~4.7! into Eq.~4.8!, we explicitly get

f ~x1 ,x2 ,x3!5b1
g~x1 ,x2 ,x3!

D~x1 ,x2 ,x3!
, ~4.9!

where
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g~x1 ,x2 ,x3!5a1a3x1~12bx2!~12bx3!1a2
2x2~12bx1!~12bx3!1a1a3x3~12bx1!~12bx2!1a2~a1

21a3
2!

3@~12bx3!x1x21~12bx2!x1x31~12bx1!x2x3#1@~a1
22a3

2!21a2
2~4a1a32a2

2!#x1x2x3 ~4.10!

and

D~x1 ,x2 ,x3!5~12bx1!~12bx2!~12bx3!2a2~a1
21a3

2!x1x2x32a2
2x1x3~12bx2!2a1a3x2x3~12bx1!

2a1a3x1x2~12bx3! ~4.11!

is the determinant ofX•M.
As a simple test of consistency, notice thatf (1,1,1)51, i.e., if the particle always returns toR along any of the three

outgoing branches, then the probability of returning to the origin is 1. The general expression~4.9! simplifies in some
interesting cases. For instance, in the particular case of isotropic scatterers (a15a25a35b5 1

4 ), one easily gets

f ~x1 ,x2 ,x3!5
1

42x12x22x3
. ~4.12!

In the case of forward isotropic scatterers (a15a25a35 1
3 , b50), Eq. ~4.9! becomes

f ~x1 ,x2 ,x3!5
3~x11x21x3!12~x1x21x1x31x2x3!1x1x2x3

2723~x1x21x1x31x2x3!22x1x2x3
. ~4.13!
to
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As a third example, let us consider the deterministic rota
model (a151, a25a35b50), in which casef (x1 ,x2 ,x3)
5x1x2x3.

The function f (x1 ,x2 ,x3) corresponding to those trajec
tories with a left rotator~L! as the first scatterer found is th
same for these models as the one corresponding toR, pro-
vided that the branches with return probabilitiesx1 , x2, and
x3 are now considered in clockwise order.

B. Average first return probability

From the definition off (x1 ,x2 ,x3) it is obvious that the
~average! first return probability satisfies the following equ
tion:

x5xB1~12xB!^ f ~x1 ,x2 ,x3!&, ~4.14!

where the brackets denote an average over all possible
figurations. Indefinitely ramified Cayley trees are included
this average, so that it is not possible to compute it exac
Obviously, ^x1&5^x2&5^x3&5x. On the other hand, al
though x1 , x2, and x3 are statistically independent, i.e
^x1

n1x2
n2x3

n3&5^x1
n1&^x2

n2&^x3
n3&, one has^x1

n1&Þxn1, n1.1.
The simplest mean-field approximation is obtained by s
stituting every branch of the Cayley tree starting from t
first scatterer visited by an average branch with an aver
return probability. In this approximation,̂ f (x1 ,x2 ,x3)&
˜ f (^x1&,^x2&,^x3&)5 f (x,x,x) and Eq.~4.14! becomes

x5xB1~12xB! f ~x,x,x!. ~4.15!

The mean-field theory~4.15!, which we will refer to as the
zeroth-order approximation to Eq.~4.14!, was formulated
and analyzed in Ref.@11#. An improved ~i.e., first-order!
mean-field theory is obtained if we explicitly include in th
configurational average the nearest neighbors on the Ca
tree of the first scatterer visited. If the nearest neighbor of
initial rotator along a given path is a backscatterer, then
r

n-

y.

-

ge

ey
e
e

return probability along that path will be taken as 1; in t
case where one of the nearest neighbors of the first scat
visited is a rotator, the probability of return along that pa
will be assumed to be

y5
x2xB

12xB
. ~4.16!

An average over all the possible configurations of the nea
neighbors of the first rotator visited by the moving partic
yields the following equation forx:

x5xB1~12xB!$xB
3 f ~1,1,1!1~12xB!3f ~y,y,y!

1xB
2~12xB!@ f ~1,1,y!1 f ~1,y,1!1 f ~y,1,1!#

1xB~12xB!2@ f ~1,y,y!1 f ~y,1,y!1 f ~y,y,1!#%.

~4.17!

The meaning of Eq.~4.17! is clear; the first term on the
right-hand side corresponds to the collision of the mov
particle with a backscatterer after leaving the origin; the s
ond term corresponds to those trajectories where the par
collides first with a rotator and then encounters three ba
scatterers on the branches of the tree, so that the par
returns to the origin with probabilityf (1,1,1)51; the third
term corresponds to the case where the first scatterer
rotator and its nearest neighbors are also rotators. The o
terms have similar interpretations. Inserting Eq.~4.16! into
Eq. ~4.17!, we get a closed equation forx whose solution is
expected to be a better estimate of the first return probab
than the solution of Eq.~4.15!.

More generally, we can write thenth-order approximation
in the form

x5xB1~12xB!(Cn
P~Cn! f Cn~y!, ~4.18!
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1318 PRE 60L. ACEDO AND A. SANTOS
where the sum runs over all possible configurations$Cn% that
include thenth-order neighbors of the first rotator foun
P(Cn) is the probability of that configuration, andf Cn(y) is
the corresponding first return probability. Of cours
(CnP(Cn)51. For example, Fig. 4 shows a typical config

ration corresponding to n52. The probability of
that configuration is P(C2)5xB

3(12xB)3 and f C2(y)

5 f „1,f (1,y,y),1…. An example of third-order configuratio
can be obtained from the second-order configuration of F
4 by assuming that the two outermost rotators are s
rounded, for instance, by three rotators and by one rot
and two backscatterers, respectively. In that case,P(C3)
5xB

5(12xB)7 and f C3(y)5 f „1,f (1,f (y,y,y), f (y,1,1)),1…. In

general,f Cn(y) can include up ton levels of nestedf func-
tions. The number of terms on the right-hand side of E
~4.18! increases withn faster than exponentially. In a Cayle
tree of coordination number equal tob, the numberNn of
different configurations involving up to thenth generation of
neighbors satisfies the recurrence relationNn

5(m50
b21 ( m

b21)Nn21
m 5(11Nn21)b21, with N152b21, so

that logNn.const3(b21)n. Even when the number of con
figurations essentially different can be reduced if the rota
are sufficiently symmetric, only the theories of the lowe
orders are manageable. In the next section we compare
predictions forn50,1,2 with Monte Carlo simulation result
for some models.

The renormalization scheme outlined in this section is s
useful to obtain some important properties of the first ret
probability, such as the percolation threshold. In Appendix
it is shown that the percolation thresholdxB

c is a fixed point
of the renormalization transformation and takes the va
xB

c 5(b22)/(b21) for all models defined on a lattice o
cordination numberb. It is also proved there that in the crit
cal region@cf. Eq. ~B14!#

12x'An~xB
c 2xB!, An

21[
1

2n

]2hn

]y2 U
xB5x

B
c ,y51

, n>1,

~4.19!

wherehn(y,xB) is given by Eq.~B7!. This implies thatD*
;xB

c 2xB ~i.e. m51) in our mean-field theory, as seen, f
instance, from Eqs.~3.23!–~3.26!.

As shown in Appendix B, Eq.~4.18! gives the exact first
return probability, regardless of the ordern of the approxi-

FIG. 4. A typical configuration of a Cayley tree to generati
n52. The corresponding probability of first return to the origin
f „1,f (1,y,y),1…, wherey is the first return probability on the as
sumption that the first scatterer visited is a rotator.
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mation, in three special cases: the deterministic rotator~or
Gunn-Ortuño! model, the deterministic mirror~or Ruijgrok-
Cohen! model, and stochastic models in the absence of ba
scatterers. In the latter case, moreover, the theory develo
in this section coincides with the RRA.

V. COMPARISON WITH MONTE CARLO SIMULATIONS

In order to test the reliability of the theories developed
Secs. III and IV, the diffusion coefficient and the first retu
probability have been measured by means of Monte C
simulations performed on Cayley trees. We have used
Cayley tree method discussed in Refs.@11# and@12#. Rather
than performing simulations on a regular lattice for finiter
and then taking the limitr˜0, we have directly worked in
that limit by considering the scaled distancer* 5rr and time
t* 5rt, which become continuous variables in the limitr
˜0. In the method we used, the scatterers already visited
the moving particle are labeled and a matrix is used to s
the labels of the nearest neighbors of every scatterer pla
in the tree. If the particle is deflected along a path occup
by a scatterer, the above matrix gives information on the t
of the scatterer to be found and on its distance from
previous scatterer. In the case where the particle is defle
along a branch not previously explored, a new scattere
type a is placed with a probability equal toxa and at a dis-
tancer * drawn from the Poisson distributionP(r * )5e2r* .
Thus, the Cayley tree grows as the particle moves, so tha
averages over configurations and trajectories are comp
simultaneously. We have evaluated the velocity autocorr
tion functionF(t* ) at t* 5Dt* ,2Dt* , . . . , byaveraging the
dot productv(0)•v(t* ) over a large numberN of trajecto-
ries. Then the reduced diffusion coefficientD* is numeri-
cally evaluated from the Green-Kubo formula

D* 5 lim
t*˜`

1

dE0

t*
dtF~t!.

1

dE0

tmax*
dtF~t!. ~5.1!

In the regionxB<0.5 we have typically takenDt* 50.1 and
N523105, and the maximum simulation time was abo
tmax* 525. On the other hand, the diffusion coefficient is t

FIG. 5. First return probability for the forward isotropic mod
on the square lattice (a15a25a35

1
3 , b50). The Monte Carlo

data points are denoted by open circles. The dotted line, bro
line, and solid line correspond to the predictions of the mean-fi
theory of ordersn50, n51, andn52, respectively.
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PRE 60 1319DIFFUSION IN LATTICE LORENTZ GASES WITH A . . .
small forxB>0.5, so that a larger number of trajectories a
larger simulation times are required to get accurate value
this region we have usedN5108 trajectories until a maxi-
mum timetmax* 5104. The first return probabilityx is approxi-
mately computed in the simulations as the fraction of p
ticles that return for the first time to the starting site befor
given timet0* much larger than the average return time. Us
ally, t0* 51500 is sufficient, except forxB very close toxB

c

@11#. Although this method always provides a lower bou
to the correct first return probability, the fraction of returnin
particles not accounted for is exponentially small.

A comparison between the Monte Carlo simulation resu
for x and the predictions of the mean-field theories discus
in the preceding section is performed in Figs. 5 and 6 for
square-lattice models of forward isotropic scatterers
quasi-isotropic mirrors, respectively. In these figures,
dotted lines correspond to the zeroth-order mean-fi
theory, the broken lines to the first-order mean-field theo
and the solid lines to the second-order theory. The first-or
theory improves significantly the predictions of the zero
order theory already presented in Ref.@11#. The subsequen
improvement of the second-order approximation is still n
ticeable but less dramatic. In general, the convergence o
nth-order approximation, Eq.~4.18!, towards the exact resu
as n˜` is expected to be very slow, so thatn52

FIG. 6. Same as in Fig. 5 but for the quasi-isotropic mirr
model (a15a25b5

1
3 , a350).

FIG. 7. Diffusion coefficient for the deterministic rotator mod
on the square lattice (a151, a25a35b50). The Monte Carlo
data points are shown as open circles. The dotted line is the pr
tion of the repeated ring approximation, the broken line correspo
to the mean-field theory discussed in this paper, and the solid lin
the exact result.
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gives an optimal compromise between simplicity and re
ability. We have checked that a behavior similar to that
Figs. 5 and 6 is found for the model of isotropic scatterers
square or hexagonal lattices. In the latter case, since the
ordination number is larger than in the case of a square
tice and correlations become less likely, the theory withn
51 is seen to be sufficient. It is worth remarking that t
agreement between the mean-field theories and the M
Carlo results worsens, as expected, near the percola
threshold. While the theories with finiten predict that 12x
;xB

c 2xB @cf. Eq. ~4.19!#, the simulation results seem to in
dicate a critical exponent larger than 1. Thus we specu
that the amplitudeAn in ~4.19! goes to 0 asn˜`.

Let us now consider the behavior of the diffusion coef
cient. In Fig. 7 the simulation results ofD* for thedetermin-
istic rotator model are compared with the exact result, E
~1.6!, the RRA prediction, Eq.~3.16!, and our mean-field
theory, Eq.~3.23!. While the original RRA can be trusted fo
xB<0.2 only, our alternative mean-field theory is reliable
the rangexB<0.5; for greater concentrations of backscatt
ers the predicted diffusion coefficient is too large as co
pared with the exact result. There is no exact result for
diffusion coefficient onstochasticCayley trees. Thus it is
indeed rewarding to realize that the mean-field theory
have proposed in this paper provides a good estimate in
the cases studied. This is illustrated in Figs. 8 and 9 for
forward isotropic model and the quasi-isotropic mirr

ic-
s
is

FIG. 8. Diffusion coefficient for the forward isotropic mode
defined on the square lattice (a15a25a35

1
3 , b50). The re-

peated ring approximation prediction is shown as a dotted line,
theory presented in this paper corresponds to the solid line, and
open circles are the results of the Monte Carlo simulation.

FIG. 9. Same as in Fig. 8 but for the quasi-isotropic mirr
model (a15a25b5

1
3 , a350).
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1320 PRE 60L. ACEDO AND A. SANTOS
model, respectively. The RRA predictions~dotted lines! are
given by Eqs.~3.18! and~3.19!; the solid lines correspond t
Eqs. ~3.25! and ~3.26!, supplemented by the second-ord
mean-field theory to determinex, although the use of the
zeroth-order theory, Eq.~4.15!, already yields fairly good
results. As expected, the agreement between the simula
results and the theory developed in this paper becomes w
near the percolation threshold. In fact, our mean-field
proximation predicts that the critical exponent defined in E
~1.8! is m51, while the simulation data support the valu
m.2.

VI. CONCLUDING REMARKS

In this paper we have proposed a mean-field theory for
diffusion coefficient of a particle moving on a Cayley tre
whose sites are occupied by scatterers of several types
cluding a fractionxB of backscatterers. These backscatter
block the growth of the tree and are responsible for the
sence of percolation and diffusion if their concentration e
ceeds a certain critical valuexB

c . The Cayley tree corre
sponds to the low-density limit of lattice Lorentz gases w
pointlike scatterers, except for the deterministic case@13#.
The theory is built upon three independent mean-field
sumptions:~a! the relationship~3.11! between an effective
collision operatorL̄ and an effective ring operatorR̄, which
takes into account the so-called repeated ring collisions;~b!
the relationship~3.20! between the ring operator and the fir
return probability matrixX; and~c! a hierarchy of mean-field
theories for the first return probabilityx discussed in Sec. V
In the repeated ring approximation, on the other hand,
sumptions~b! and ~c! are replaced by the self-consisten
condition ~3.12!. While both theories are equivalent in th
absence of backscatterers (xB50, in which case they give
the exact diffusion coefficient!, they strongly deviate from
each other asxB increases. In fact, the RRA predicts that t
diffusion coefficient vanishes forxB equal to or larger than
(b22)/2(b21), whereb is the coordination number, whic
is half the value of the correct percolation thresholdxB

c 5(b
22)/(b21) predicted by our theory. Comparison wi
Monte Carlo simulations for several models of rotators
mirrors with backscatterers has shown that the theory
sented in this paper gives a very good approximation to
first return probability and the diffusion coefficient. An in
teresting conclusion of the theory is that the diffusive per
lation threshold~fraction of backscatterers beyond which t
diffusion coefficient vanishes! coincides with the percolation
threshold~fraction of backscatterers beyond which the fi
return probability becomes 1!, and that this value depend
only on the coordination number of the lattice and not on
collision rules for the scatterers included in the model. Th
predictions are confirmed by simulations.

It is interesting to point out that in the three mean-fie
approaches considered in this paper the diffusion coeffic
is given by Eqs.~3.6!, ~3.13!, and~3.14!. The differences are
that in the Boltzmann approximationz51 ~which impliesx
50), in the RRAz is the root of Eq.~3.15!, while in our
theoryz5(11x)/(12x) with x being the root of Eq.~4.15!,
~4.17!, or, more generally, Eq.~4.18!. The three theories ar
identical when no retracing trajectories are possible (b50
andxB50, so thatx50), the two latter theories coincide
r
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backscatterers are absent (xB50), and only our theory re-
mains reliable whenever a percolation threshold existsxB
Þ0).

The mean-field theory proposed in this paper could
improved along several directions. First, the repeated r
expression for the collision operator, Eq.~3.11!, could be
extended to take into account nonring collisions, such
nested rings. Moreover, the purely mean-field ring opera
in Eq. ~3.20! could be modified to consider correlations b
tween successive visits of the particle to the same branc
of the tree. As for the determination ofx, although the
scheme outlined in Sec. V admits in principle its systema
implementation to higher and higher orders, this is in pr
tice hindered by the rapid increase of the associated algeb
complexity. Since we have used here the second-order
proximation forx, we can say that it implies a higher degre
of refinement than that of Eqs.~3.11! and ~3.20!. In this
respect, it is worth noting that even when using the zero
order approximation~4.15! one obtains fairly good estimates
the resulting theory having the same degree of algeb
complexity as in the RRA. Finally, it is tempting to specula
that the methods proposed in this paper might have a m
general interest that transcends the results obtained her
somewhat artificial models. However, the extension of th
methods to real fluids does not seem straightforward
deserves detailed study.
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APPENDIX A: FIRST RETURN PROBABILITY IN THE
GENERAL ROTATOR MODEL AND IN THE

MIRROR MODEL

1. General rotator model

The rotator models defined in Sec. II for square and h
agonal Cayley trees can be easily extended to Cayley t
with any coordination numberb. If the moving particle col-
lides with a general rotator of this kind, it will be backsca
tered with probabilityb and deflected with probabilitiesa1 ,
a2, . . . , ab21, which are assigned to every direction
counterclockwise order for right rotators and clockwise ord
for left rotators. In a quenched configuration the branch
growing from these directions have the corresponding retu
ing probabilitiesx1, . . . ,xb21, so that we can define a func
tion f (x1 , . . . ,xb21) giving the probability of first return in
this configuration, provided that the first scatterer visited i
rotator. Proceeding as in Sec. IV, it is easy to find th
f (x1 , . . . ,xb21) is given by the right-hand side of Eq.~4.8!,
where the generalizations of the matricesa, X, M, anda8
are straightforward. In the particular case of isotropic sc
terers (a15a25ab215b5b21), the result simplifies to

f ~x1 , . . . ,xb21!5S b2 (
i 51

b21

xi D 21

, ~A1!

which is the generalization of Eq.~4.12!.
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2. Mirror model

A line of reasoning parallel to that of Sec. IV shows that Eqs.~4.2!, ~4.4!–~4.6!, and ~4.8! are also valid for the mirror
model on the square lattice, except that the matrixM now takes the form

M5S b a3 a2

a3 b a1

a2 a1 b
D ~A2!

anda85a. Also, x1 , x2, andx3 must be understood as the return probabilities along the branches with scattering proba
a1 , a2, anda3, respectively. The final result is still given by Eq.~4.9!, but now

g~x1 ,x2 ,x3!5a1
2x1~12bx2!~12bx3!1a2

2x2~12bx1!~12bx3!1a3
2x3~12bx1!~12bx2!12a1a2a3@~12bx3!x1x2

1~12bx2!x1x31~12bx1!x2x3#2@~a1
22a3

2!22a2
2~2a1

212a3
22a2

2!#x1x2x3 , ~A3!

D~x1 ,x2 ,x3!5~12bx1!~12bx2!~12bx3!22a1a2a3x1x2x32a2
2x1x3~12bx2!2a1

2x2x3~12bx1!2a3
2x1x2~12bx3!.

~A4!

In the case of what we have called the quasi-isotropic mirror model (a15a25b5 1
3 , a350), we simply have

f ~x1 ,x2 ,x3!5
92x3~31x11x2!2x1x21x1x2x3

2729~x11x21x3!13x1x21x1x2x3
. ~A5!

In the trivial case of the deterministic mirror~Ruijgrok-Cohen! model (a151, a25a35b50), one getsf (x1 ,x2 ,x3)5x1.

APPENDIX B: PERCOLATION THRESHOLD IN A CAYLEY TREE

The objective of this appendix is to prove by induction that the percolation threshold,xB
c , predicted by the mean-field theor

expressed in Eq.~4.18! is independent ofn and takes the valuexB
c 5(b22)/(b21) for models defined on a Cayley tree wi

coordination numberb. We only consider here the caseb54 for simplicity, but the generalization to any value ofb is
straightforward. Equation~4.17! for x in the mean-field theory of ordern51 can also be written as an equation fory[(x
2xB)/(12xB), the probability of first return along a path whose first scatterer is a rotator. If we define the fun
f1(y,xB)[y2h1(y,xB), where

h1~y,xB![xB
31~12xB!3f ~y,y,y!1xB

2~12xB!@ f ~1,1,y!1 f ~1,y,1!1 f ~y,1,1!#1xB~12xB!2@ f ~1,y,y!1 f ~y,1,y!1 f ~y,y,1!#,
~B1!
er-
then Eq.~4.17! can be written as

f1~y,xB!50. ~B2!

A mathematical solution of this equation for any value ofxB

is y51. This is in fact thephysicalsolution if xB>xB
c ~where

the percolation thresholdxB
c is here assumed unknown!,

while a root y,1 is the physical one in the intervalxB

,xB
c . This means thatf1(y,xB)5(12y)f̃1(y,xB), where

f̃1(y51,xB5xB
c )50, so thaty˜1 whenxB˜xB

c from be-
low. Consequently, the following condition holds:

]f1~y,xB!

]y U
xB5x

B
c ,y51

50. ~B3!

This equation determines the percolation threshold,xB
c . In

order to calculate the derivative in~B3! we need the result
] f ~x1 ,x2 ,x3!

]xi
U

x15x25x351

51 , i 51,2,3, ~B4!

that follows from Eqs.~4.9!–~4.11!. Equation~B4! implies

] f ~y,1,1!

]y U
y51

51, ~B5a!

] f ~y,y,1!

]y U
y51

52, ~B5b!

] f ~y,y,y!

]y U
y51

53, ~B5c!

plus all the relations obtained from the above ones by p
mutation of the arguments off. From these results and~B3!
we get 123(12xB

c )50, which yieldsxB
c 5 2

3 .
The theory of ordern is expressed through the relation
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fn~y,xB![y2hn~y,xB!50, ~B6!

where

hn~y,xB![(Cn
P~Cn! f Cn~y!. ~B7!

The condition forxB
c is obtained from

]fn~y,xB!

]y U
xB5x

B
c ,y51

50. ~B8!
l,
di
io
Now we will prove by induction that

]hn~y,xB!

]y U
y51

53n~12xB!n. ~B9!

First, Eq. ~B9! is obviously true forn51, as seen before
Next, sincehn(y,xB) represents the first return probabilit
provided that the first scatterer visited is a rotator, we c
decompose it in a similar way to that employed to write E
~4.17!, so that Eq.~B7! is equivalent to
hn~y,xB!5~12xB!3 (Cn21
(
Cn218

(
Cn21
9
P~Cn21!P~Cn218 !P~Cn219 ! f „f Cn21

~y!, f C
n218 ~y!, f C

n21
9 ~y!…1xB~12xB!2

3 (Cn21
(
Cn218
P~Cn21!P~Cn218 !@ f „1,f Cn21

~y!, f C
n218 ~y!…1 f „f Cn21

~y!,1,f C
n218 ~y!…1 f „f Cn21

~y!, f C
n218 ~y!,1…#

1xB
2~12xB! (Cn21

P~Cn21!@ f „f Cn21
~y!,1,1…1 f „1,f Cn21

~y!,1…1 f „1,1,f Cn21
~y!…#1xB

3 . ~B10!
n-

he

out

t

in
Thus, making use of Eq.~B4!, we easily get

]hn~y,xB!

]y U
y51

53~12xB!
]hn21~y,xB!

]y U
y51

. ~B11!

This completes the proof that Eq.~B9! holds for arbitraryn.
Therefore, the solution of Eq.~B8! is xB

c 5 2
3 , regardless of

the ordern of the approximation.
Since Eq.~B4! also holds in the stochastic mirror mode

the same result can be found in that case. By procee
along similar lines in the case of models with a coordinat
numberb, we obtain

]hn~y,xB!

]y U
y51

5~b21!n~12xB!n, ~B12!

which implies xB
c 5(b22)/(b21). Near the critical point

we can expandfn as

fn~y,xB!'
1

2

]2fn

]y2 U
xB5x

B
c ,y51

~y21!21
]2fn

]xB]yU
xB5x

B
c ,y51

3~y21!~xB2xB
c !, ~B13!

where we have taken into account thatfn(1,xB)50, as well
as Eq.~B8!. Now Eq. ~B6! yields

12y'~b21!An~xB
c 2xB!, An

21

[
1

2n

]2hn

]y2
uxB5x

B
c ,y51 , n>1. ~B14!
ng
n

Before concluding this appendix, it is worth taking adva
tage of Eq.~B10! to prove that the solution of Eq.~B6! is
independent ofn in some special cases. First, consider t
deterministic rotator model. In that case,f (x1 ,x2 ,x3)
5x1x2x3, so that Eq.~B10! becomes

hn~y,xB!5@xB1~12xB!hn21~y,xB!#3. ~B15!

Thus, the solution of Eq.~B6! coincides with the solution of
the cubic equation

y5@xB1~12xB!y#3, ~B16!

which is equivalent to the exact equation~1.7!, for arbitrary
n.

As a second application, let us consider models with
backscatterers (xB50). Equation~B10! then becomes

hn~y!5 f „hn21~y!,hn21~y!,hn21~y!…, ~B17!

so that Eq.~B6! is equivalent to

y5 f ~y,y,y! ~B18!

for arbitrary n. It is possible to prove@11# the equivalence
between Eqs.~B18! and ~3.15!, where in the latter we mus
makexB50 andz5(11y)/(12y).

Finally, let us consider the deterministic mirror model,
which casef (x1 ,x2 ,x3)5x1. Thus, Eq.~B10! yields

hn~y,xB!5xB1~12xB!hn21~y,xB! ~B19!

and Eq.~B6! is equivalent to

y5xB1~12xB!y ~B20!

for any n, whose solution is~provided thatxBÞ0) x5y
51.
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